• Title/Summary/Keyword: 절리거?계수

Search Result 14, Processing Time 0.029 seconds

Effects of 3-D Fracture Tensor Parameters on Deformability of Fractured Rock Masses (삼차원 절리텐서 파라미터가 절리성 암반의 변형특성에 미치는 영향)

  • Ryu, Seongjin;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.66-81
    • /
    • 2021
  • The effects of directional fracture tensor components and first invariant of fracture tensor on deformation moduli and shear moduli of fractured rock masses is analyzed based on regression analysis performed between 3-D fracture tensor parameters and deformability of DFN blocks. Using one or two deterministic joint sets, a total of 224 3-D discrete fracture network (DFN) cube blocks were generated with various configurations of deterministic density and probabilistic size distribution. The fracture tensor parameters were calculated for each generated DFN systems. Also, deformability moduli with respect to three perpendicular direction of the DFN cube blocks were estimated based on distinct element method. The larger the first invariant of fracture tensor, the smaller the values for the deformability moduli of the DFN blocks. These deformability properties present an asymptotic pattern above the certain threshold. It is found that power-law function describes the relationship between the directional deformability moduli and the corresponding fracture tensor components estimated in same direction.

An Experimental Study for the Scale Effects on Shear Behavior of Rock Joint (절리면 전단거동의 크기효과에 관한 실험적 연구)

  • Lee, Sang-Eun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.31-41
    • /
    • 2006
  • The scale effect of specimens on the shear behavior of joints is studied by performing direct shear tests on six different sizes in Granite. The peak and residual shear stress, shear displacement, shear stiffness, and dilation angle are measured with the different normal stress(0.29~2.65MPa) and roughness parameters. It is also shown that both the joint roughness coefficient(JRC) and the joint compression strength(JCS) reduce with increasing joint length. A series of shear tests show about 56~67% reduction in peak shear stress, and about 18~44% in residual shear stress, respectively as the contact area of joint increases from 12.25 to $361cm^2$. Also the variation of dilation angle is $27^{\circ}$ at normal stress of 0.29 MPa and $6^{\circ}$ at normal stress of 2.65 MPa, respectively. The envelopes considering scale effect for JRC are made for the peak shear strength of rock joint in comparison with the Barton's equation.

  • PDF

A New Coefficient for Three Dimensional Quantification of Rock Joint Roughness (암석 절리면 거칠기의 새로운 3차원 정량화 계수)

  • Park, Jung-Wook;Lee, Yong-Ki;Song, Jae-Joon;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.106-119
    • /
    • 2012
  • Roughness of rock joint has generally been characterized based upon geometrical aspects of a two-dimensional surface profile. The appropriate description of joint roughness, however, should consider the features of roughness mobilization at contact areas under normal and shear loads. In this study, direct shear tests were conducted on the replicas of tensile fractured gneiss joints and the influence of the shear direction on the shear behavior and effective roughness was examined. In this procedure, a joint surface was represented as a group of triangular planes, and the steepness of each plane was characterized using the concepts of the active and inactive micro-slope angles. The contact areas at peak strength which were estimated by a numerical method showed that the locations of the contact areas were mainly dependent on the distribution of the micro-slope angle and the shear behavior of joint was dominated by only the fractions with active micro-slope angles. Therefore, a three-dimensional coefficient for the quantification of rock joint roughness is proposed based on the distribution of active micro-slope angle: active roughness coefficient, $C_r$. Comparison of the active roughness coefficient and the peak shear strength obtained from the experiment suggests that the active roughness coefficient is the effective parameter to quantify the surface roughness and estimate the shear behavior of rock joint.

A Numerical Analysis on the Shear and Hydraulic behavior of Single Rock Joint with Roughness (거칠기를 고려한 단일 절리의 전단, 수리적 거동에 대한 수치해석)

  • 이희석;이연규
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.366-377
    • /
    • 2000
  • The development of proper joint model, which can describe real phenomena exactly and still can be used easily, is one of the most important element for the analysis of the mechanical and hydraulic behavior of discontinuous rock mass. In this study, an elasto-plastic constitutive model of joint behavior considering asperity degradation was extended with the concept of first and second order asperities. The proposed model was implemented to numerical code with discrete finite joint element. The parametric study with the various asperity angles and degradation coefficients showed that the model can reproduce the shear behavior of typical rough joints well. Results of laboratory monotonic and cyclic shear tests were compared with those of numerical tests to validate the model. The hydraulic model considering the relations between gouge production and aperture was introduced to the mechanical mode1. In an attempt to examine the performance of the model, comparative numerical test was conducted. Permeability between joint surfaces increased rapidly at the first stage, but became nearly constant with increasing shear displacement due to gouge production and uniform variation of aperture distribution.

  • PDF

A Numerical Analysis on the Shear and Hydraulic behavior of Single Rock Joint with Roughness (거칠기를 고려한 단일 절리의 전단, 수리적 거동에 대한 수치해석)

  • 이희석;이연규
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.117-128
    • /
    • 2000
  • The development of proper joint model, which can describe real phenomena exactly and still can be used easily, is one of the most important element for the analysis of the mechanical and hydraulic behavior of discontinuous rock mass. In this study, an elasto-plastic constitutive model of joint behavior considering asperity degradation was extended with the concept of first and second order asperities. The proposed model was implemented to numerical code with discrete finite joint element. The parametric study with the various asperity angles and degradation coefficients showed that the model can reproduce the shear behavior of typical rough joints well. Results of laboratory monotonic and cyclic shear tests were compared with those of numerical tests to validate the model. The hydraulic model considering the relations between gouge production and aperture was introduced to the mechanical model. In an attempt to examine the performance of the model, comparative numerical test was conducted. Permeability between joint surfaces increased rapidly at the first stage, but became nearly constant with increasing shear displacement due to gouge production and uniform variation of aperture distribution.

  • PDF

The Effect of Cement Milk Grouting on the Deformation Behavior of Jointed Rock Mass (시멘트현탁액 주입에 의한 절리암반의 역학적 특성 변화)

  • 김태혁;이정인
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.331-343
    • /
    • 2003
  • Though the Grouting has been in use for a long time, it is still regarded as an technique rather than engineering. The study of ground improvement by grouting is rare especially in jointed rock mass. In this study, biaxial compression tests were performed in the jointed rock mass models with .ough surfBce joints assembled with blocks before and after grouting. The load-deformation curves of the jointed rock masses showed a non-linear relationship before grouting but showed a relatively linear deformaion behavior after grouting. Improvement ratio (deformation modulus after grouting/deformation modulus before grouting) decreased with increasing joint spacing and lateral stress. Improvement ratio decreased exponentially with increasing deformation modulus of the rock mass model before grouting. Three-dimensional FDM analysis was performed to a highway tunnel case using experimental data of grouted rock. The convergence of the tunnel predicted after grouting by the numerical modelling coincided with those attained from the field measurement.

Progressive Failure of a Rock Slope by the Subcritical Crack Growth of Asperities Along Joints (절리면의 응력확대계수가 파괴인성보다 작은 암반사면의 진행성 파괴)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.95-106
    • /
    • 2009
  • Numerical analysis of the progressive failure of a rock slope was conducted using a 3-D rock joint element considering fracture mechanics and subcritical crack growth of asperities in the rock joints. Even though the stress state in the rock slope is not changing, the elapse of time causes subcritical crack growth to break asperities in the joints. The increase of broken asperities causes failure of joints in the rock slope and the increase of failed joints results in failure of a jointed rock slope. As a result, the progressive failure of a jointed rock slope due to the gradual breaking of small asperities along joints generated by subcritical crack growth occurs at a lower stress than if rock failure occurred by exceeding the static strength or fracture toughness.

Estimation of Joint Roughness Coefficient(JRC) using Modified Divider Method (수정 분할자법을 이용한 절리 거칠기 계수(JRC)의 정량화)

  • Jang Hyun-Shic;Jang Bo-An;Kim Yul
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.269-280
    • /
    • 2005
  • We assigned points on surface of standard roughness profile by 0.1mm along the length and measured coordinates of points. Then, the lengths of profile were measured with different scales using modified divider method. The fractal dimensions and intercepts of slopes were determined by plotting the length vs scale in log-log scale. The fractal dimensions as well as intercepts of slopes show well correlation with joint roughness coefficients(JRC). However, multiplication of the kactal dimension by intercept show better correlation with IRC and we derived a new equation to estimate JRC from fractal dimension and intercept. The crossover length in which we can determine the correct fractal dimension was between 0.3-3.2mm. We measured joint roughness of 26 natural joints and calculated JRC using the equation suggested by Tse and Cruden(1979) and new equation derived by us. IRC values calculated by both equations are almost the same, indicating new equation is effective in measuring IRC.

Joint Characteristics in Sedimentary Rocks of Gyeongsang Supergroup (경상누층군 퇴적암의 절리 특성 연구)

  • Chang, Tae-Woo;Son, Byeong-Kook
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.351-363
    • /
    • 2009
  • Two orthogonal joint sets develop well only in sandstone beds in the sandstone-mudstone sequences of Gumi and Dasa outcrops within Cretaceous Gyeongsang Basin. And various joint data are similar in the beds of the same thickness in both outcrops, meaning that the joint sets were homogeneously produced by extensional deformation in the same regional stress field. Most of joints in the sandstone beds are orthogonal to, and confined by bed boundaries, which are believed to be formed by hydrofracturing during consolidation after burial. Two orthogonal joint sets are considered to be almost coeval on the basis of mutual abutting relationship which makes up fracture grid-lock and a product of rapid switching of ${\sigma}_2$ and ${\sigma}_3$ axes with constant ${\sigma}_1$ direction oriented to vertical. The joint sets in the sandstone beds show planar surfaces, parallel orientations and regular spacing, with joint spacing linearly proportional to bed thickness. The spacing distributions of the joints seem to correspond to log-normal to almost normal distribution in most of the beds. But multilayer joints do not display regular spacing and dominant size. Either joint set in this study is characterized by a high level of joint density and a saturated spacing distribution as indicated by the mode/mean ratio values and the Cv(coefficient of variance) values. Joint aperture tends to increase with the vertical length of the joints controlled by bed thickness.

Engineering Characteristics of Mudeungsan Tuff and Ipseok-dae Columnar Joints (무등산응회암과 입석대 주상절리대의 공학적 특성)

  • Noh, Jeongdu;Jang, Heewon;Lim, Chaehun;Hwang, Namhyun;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.161-173
    • /
    • 2020
  • This study is to examine the engineering characteristics of colunmar joints in Mudeugsan National Park, a global geopark. For these purposes, physical and mechanical properties of Mudeungsan Tuff, evaluation for the weathering degree of columnar joints, and crack behavior monitoring in columnar joints were conducted. The physical properties of Mudeungsan tuff were 1.02% for the average porosity, 0.38% for the average absorption, 2.69 g/㎤ for the average specific gravity, and 4,948 m/s for the average elastic wave velocity. Its mechanical properties were 337 MPa for the average uniaxial compressive strength, 68 GPa for the average elastic modulus, 0.29 for the average Poisson's ratio, 41.3 MPa for the average cohesion strength, and 62.8° for the average friction angle. the average rebound Q-value of the silver Schmidt hammer for the three columnar joint blocks at the Ipseok-dae was shown as 49.3. when this value is converted into uniaxial compressive strength, it becomes 70.5 MPa, which is about 21% of the uniaxial compression strength of Mudeungsan tuff. In addition, according to the results of crack monitoring measurements for the three columnar joint blocks at the Ipseok-dae, the crack behavior is less than 1 mm, so it is believed that its behavior in Ipseak-dae columnar joints has hardly occured to date.