최근 인터넷 기반의 웹 및 모바일 기기를 통한 소비 패턴의 다양화와 개성화가 급진전됨에 따라 전통적 유통채널인 오프라인 매장의 효율적 운영이 더욱 중요해졌다. 매장의 매출과 수익 모두를 제고하기 위해 매장은 소비자에게 가장 매력적인 상품을 적시에 공급-판매 해야 하는데 많은 상품들 중에서 어떤 SKU를 취급하는 것이 판매 확률을 높이고 재고 비용을 낮출 수 있는지에 대한 연구가 부족한 실정이다. 특히, 여러 지역에 걸쳐 다수의 오프라인 매장을 통해 상품을 판매하는 기업의 경우 고객에게 매력적인 적절한 SKU를 추천 받아 취급할 수 있다면 매장의 매출 및 수익률 제고에 도움이 될 것이다. 본 연구에서는 개인화 추천에 이용되어 왔던 협업 필터링과 하이브리드 필터링 등의 추천 시스템(Recommender System)을 국가별, 지역별로 복수의 판매 매장을 통해 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하였다. 각 매장의 취급 품목별 구매 데이터를 활용하여 각 매장 별 유사성(Similarity)을 계산하고 각 매장의 SKU별 판매 이력에 따라 협업 필터링을 하여 최종적으로 매장에 개별 SKU를 추천하였다. 또한 매장 프로파일 데이터를 활용하여 주변수 분석 (PCA : Principal Component Analysis) 및 군집 분석(Clustering)을 통하여 매장을 4개의 군집으로 분류한 뒤 각 군집 내에서 협업 필터링을 적용한 하이브리드 필터링 방식으로 추천 시스템을 구현하고 실제 판매 데이터를 바탕으로 두 방식의 성능을 측정하였다. 현존하는 대부분의 추천 시스템은 사용자에게 영화, 음악 등의 아이템을 추천하는 방식으로 연구가 진행되어 왔고 실제로 산업계에서의 적용 또한 개인화 추천 시스템이 주류를 이루고 있다. 그 동안 개인화 서비스 영역에서 주로 다루어져 왔던 이러한 추천 시스템을 동종 브랜드를 취급하는 유통 기업의 매장 단위에 적용하여 각 매장의 취급 SKU를 추천하는 방식에 대한 연구는 거의 이루어지지 않고 있는 실정이다. 기존 추천 방법론의 추천 적용 대상이 '개인의 영역이었다면 본 연구에서는 국가별, 지역별로 복수의 판매 매장을 통해 개인의 영역을 넘어 매장의 영역으로 확대하여 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하고 있다. 또한 기존의 추천시스템은 온라인에 한정되었다면 이를 오프라인으로 활용 범위를 넓히고, 기존 개인을 기반으로 분석을 하는 것보다 매장영역으로 확대 적용하기에 적합한 알고리즘을 개발하기 위해 데이터마이닝 기법을 적용하여 추천 방법을 제안한다. 본 연구의 결과가 갖는 의의는 개인화 추천 알고리즘을 동일 브랜드를 취급하는 복수의 판매 매장에 적용하여 의미 있는 결과를 도출하고 실제 기업을 대상으로 시스템으로 구축하여 활용할 수 있는 구체적 방법론을 제시했다는 데에 있다. 개인화 영역을 위주로 이루어졌던 기존의 추천 시스템과 관련한 학계의 연구 영역을 동종 브랜드를 취급하는 기업의 판매 매장으로 확장시킨 첫 시도라는 데에도 의미가 있다. 2014년 03주차 ~ 05주차 전(全) 매장 판매 수량 실적 Top 100개 SKU로 추천의 대상을 한정하여 협업 필터링과 하이브리드 필터링 방식으로 52개 매장 별로 취급 SKU를 추천하고, 추천 받은 SKU에 대한 2014년 06주차 매장별 판매 실적을 집계하여 두 추천 방식의 성과를 비교하였다. 두 추천 방식을 비교한 이유는 본 연구의 추천 방법이 기존 추천 방식 보다 높은 성과를 입증하기 위해 단순히 오프라인에 협업필터링을 적용한 것을 기준 모델로 정의하였다. 이 기준 모델에 오프라인 매장 관점의 특성을 잘 반영한 본 연구 모델인 하이브리드 필터링 방법과 비교 함으로써 성과를 입증한다. 연구에서 제안한 방식은 기존 추천 방식보다 높은 성과를 나타냈으며, 이는 국내 대기업 의류업체의 실제 판매데이터를 활용하여 입증하였다. 본 연구는 개인 수준의 추천시스템을 그룹수준으로 확장하여 효율적으로 접근하는 방법을 이론적인 프레임 워크를 만들었을 뿐 아니라 실제 데이터를 기반으로 분석하여 봄으로써 실제 기업들이 적용해 볼 수 있다는 점에서 연구의 가치가 크다.
데이터 처리 속도는 예보 능력과 관련이 있다. 최신의 입력 자료를 이용한 예측 데이터의 고속 생산은 신속한 대처를 가능하게 한다. 또한 알고리즘 작성, 계산, 결과 평가, 알고리즘 개선으로 이어지는 순환 구조를 원활하게 할 뿐만 아니라 오류 발생시 빠른 시간 내에 복구할 수 있게 하는 등 매우 중요한 요소이다. 현재의 조기경보 시스템은 매 계산 주기 마다 섬진강 유역의 10개 시군에 대해 30미터 해상도의 격자형 자료를 400개 이상 생성하고 있으며(중간 데이터 포함) 최대 9일까지 예보되는 자료를 포함할 경우 600개 이상이다. 이는 전국을 30미터 해상도로 약 45개를 생성하는 계산양과 비슷하다. 또한 14,000여개의 필지에 대한 구역 통계와, 각 래스터의 평균, 최대, 최소 등의 통계자료 생성도 함께 수행 해야 한다. 이와 같은 대량의 데이터를 한정된 시간 내로 처리하기 위한 몇 가지 기법을 적용하여 적용하였으며, 아직 적용은 못하였으나 가능성의 여부를 평가해 보는 것으로 본 연구를 진행하였다. 그 결과 앞서 제시된 래스터 캐시, NFS 캐시, 분산 처리를 모두 적용할 경우 데이터 처리 시간을 1/8로 단축 시킬 수 있음이 확인되었다. 또한 GPU를 이용한 연산을 적용할 경우 일부 모듈에 대해 매우 큰 폭으로 수행 시간을 단축 시킬 수 있음을 확인하였다. 다만 캐시를 위한 추가적인 디스크, GPU라는 별도의 하드웨어, 추가된 하드웨어 지원을 위한 고출력 전원 장치와 이에 따른 UPS (Uninterruptible power supply, 무정전 전원공급 장치)까지 상대적으로 높은 사양으로 준비해야 하는 비용적인 문제가 발생할 수 있다. 본 연구에서 제시한 네 가지 기법 중 세 가지는 계산 서버 추가를 통한 수평적 성능 확장에 관한 것이다. 하지만 서버의 추가가 처리 속도 향상으로 이어지지 않음은 물론 오히려 저하시키는 경우가 있다. 본 연구에서는 특정 시간 내로 작업을 완료 시키지 못하면 해당 작업을 반환하여 다른 서버가 처리하는 간단한 방식을 이용한다. 하지만 이런 문제를 지속적으로 발생시키는 계산 서버가 발견된다면 정해진 기준에 따라 계산 작업에서 완전히 퇴출 시켜야 성능 향상에 도움이 된다. 따라서 처리 속도에 대한 정확한 원인을 검사하고 이를 실시간으로 반영할 수 있는 기법이 필요하다.
압축센싱 기술인 CAFB는 대상 구조물의 원시신호를 목적된 주파수 범위의 신호로 압축하여 획득하도록 개발되었다[27]. 이때 압축센싱을 위해 CAFB는 대상 구조물의 목적된 주파수 범위에 따라 다양한 기준신호로 최적화 될 수 있다. 또한, 최적화된 CAFB는 지진과 같은 돌발/위험상황에서도 대상 구조물의 유효한 구조응답을 효율적으로 압축할 수 있어야 한다. 본 논문에서는 상대적으로 유연한 구조물의 효율적인 구조 건전도 모니터링을 위하여 목적된 주파수 범위를 10Hz 미만으로 설정하고, 이를 위한 CAFB의 최적화 방법과 지진상황에서 CAFB의 지진응답성능을실험적으로 평가하였다. 이를 위해 본 논문에서는, 먼저 Kobe 지진파형을 이용하여 CAFB를 최적화하였고, 이를 자체 개발한 무선 IDAQ 시스템에 임베디드 하였다. 그리고, Kobe 지진파형을 이용하여 2경간 교량에 대한 지진응답실험을 수행하였다. 마지막으로 CAFB가 내장된 IDAQ 시스템을 이용하여 실시간으로 2경간 교량의 지진응답을 무선으로 획득하고, 획득된 압축신호는 원시신호와 상호 비교하였다. 실험의 결과로부터 압축신호는 원시신호와 대비하여 우수한 응답성능과 데이터 압축효과를 보였고, 또한 CAFB는 지진상황에서도 구조물의 유효한 구조응답을 효과적으로 압축센싱할 수 있었다. 최종적으로 본 논문에서는 목적된 주파수 범위(10Hz 미만)에 적합하도록 CAFB의 최적화 방법을 제시하였고, CAFB는 지진상황의 계측-모니터링을 위해 경제적이고 효율적인 데이터 압축센싱 기술임을 증명하였다.
데이터마이닝은 데이터베이스에 저장되어 있는 많은 일반적인 정보들을 가지고 의미있는 정보를 찾아내는 것이다. 많은 데이터 마이닝 기법들 중에 클러스터링과 연관규칙을 다루는 연구가 많이 이뤄지고 있다. 클러스터링 기법에는 공간데이터를 다루거나 속성데이터(비공간 데이터)를 다루는 많은 기법들이 연구되고 있고, 연관규칙 또한 빈발 패턴을 찾아내는 연구가 활발히 진행되고 있다. 기존의 연구 중 apriori 연관규칙 알고리즘을 개선하는 방법으로 비트 클러스터링을 이용하는 방법이 있다. 우리는 apriori 연관규칙 보다 더 나은 성능을 나타내는 FP-Growth에 대해 살펴보고 FP-Growth의 문제점을 찾아 이를 해결하기 위한 방법으로 비트 클러스터링을 이용하여 해결할 수 있는지에 대해 연구하였다. 본 논문에서는 전체 데이터베이스를 비트 클러스터링을 통해 몇 개의 클러스터로 나누어 FP-Growth 방법에 사용할 것을 제안하였다. 이렇게 하면 기존의 FP-Growth 방법보다 더 나은 성능을 가질 수 있으며 이를 증명하기 위한 실험을 수행하였다. 실험은 패턴 마이닝 연구에서 사용하는 chess 데이터를 이용하였으며, 최소지지도를 다르게 적용하면서 FP-Tree를 생성하는 실험을 하였다. 최소지지도가 높은 경우에는 기존의 방법과 비슷한 결과를 얻었지만 그 외 경우에는 기존의 방법보다 본 논문에서 제안하는 방법이 더 우수한 결과를 얻을 수 있었다. 본 논문의 주요 결론으로서 비트 클러스터링을 이용한 방법이 상대적으로 우수한 데이터 마이닝 방법임을 정리하였으며, 아울러 GML 데이터를 위한 비트 클러스터링의 적용방법론에 대하여도 논의하였다.적 성분으로 평가된다. 이러한 잠재적 추적자들에 근거할 때, 한국 서남해에 발달하고 있는 니질 퇴적대의 전퇴적물은 한국과 중국의 혼합 기원으로 해석되나, 실트와 점토 구간의 퇴적물로 나누어 볼 때 그기원이 각각 다르게 나타났다. 즉, 점토 퇴적물은 한국과 중국의 혼합 기원으로, 실트 퇴적물은 한국 기원이 우세한 것으로 해석된다. 과립에 황금입자가 표지되었다. 따라서 1일 동안 배설되는 분비배설항원은 선모충 유충의 표피와 stichocyte의 ${\alpha}_0\;{\alpha}_1$ 과립에서 유도되는 반면에 3일 동안 배설되는 분비배설항원은 표피와 stichocyte의 ${\alpha}_0$ 과립에서 유도되고, 선모충유충 감염후 1주, 4주에 실험쥐에서 형성되는 감염항체는 선모충의 표피와 기저층 그리고 EIM에서 분비되는 항원에 의하여 생성된다. 이상의 결과로 선모충의 분비배설항원과 감염항원은 선모충 유충의 표피와 EIM및 stichocyte의 ${\alpha}_0\;{\alpha}_1$ 과립에서 유도되며 이들은 45 kDa 단백을 포함하고 있는 것으로 생각된다.성하고 있는 세포들에는 세포질이 어두운 세포와 밝은 세포가 있었으며, 세포질내에는 전자밀도가 높은 분비과립이 관찰되었다. 전체적인 특징은 눈물샘분비세포 중 장액세포의 것과 비슷하였으나, 과립의 크기는 작았다. 분비관을 구성하는 세포들 사이에도 연접복합체가 매우 잘 발달되어 있었다. 샘포에서 사이관으로 이행되는 곳에서도 샘포세포와 사이관세포 사이에서도 연접복합체가 관찰되었다. 분비관세포의 분비과립 가운데는 중심부분에 전자밀도가
최근 워드 임베딩이 딥러닝 기반 자연어 처리를 다루는 다양한 업무에서 우수한 성능을 나타내면서, 단어, 문장, 그리고 문서 임베딩의 고도화 및 활용에 대한 연구가 활발하게 이루어지고 있다. 예를 들어 교차 언어 전이는 서로 다른 언어 간의 의미적 교환을 가능하게 하는 분야로, 임베딩 모델의 발전과 동시에 성장하고 있다. 또한 핵심 기술인 벡터 정렬(Vector Alignment)은 임베딩 기반 다양한 분석에 적용될 수 있다는 기대에 힘입어 학계의 관심이 더욱 높아지고 있다. 특히 벡터 정렬은 최근 수요가 높아지고 있는 분야간 매핑, 즉 대용량의 범용 문서로 학습된 사전학습 언어모델의 공간에 R&D, 의료, 법률 등 전문 분야의 어휘를 매핑하거나 이들 전문 분야간의 어휘를 매핑하기 위한 실마리를 제공할 수 있을 것으로 기대된다. 하지만 학계에서 주로 연구되어 온 선형 기반 벡터 정렬은 기본적으로 통계적 선형성을 가정하기 때문에, 본질적으로 상이한 형태의 벡터 공간을 기하학적으로 유사한 것으로 간주하는 가정으로 인해 정렬 과정에서 필연적인 왜곡을 야기한다는 한계를 갖는다. 본 연구에서는 이러한 한계를 극복하기 위해 데이터의 비선형성을 효과적으로 학습하는 딥러닝 기반 벡터 정렬 방법론을 제안한다. 제안 방법론은 서로 다른 공간에서 벡터로 표현된 전문어 임베딩을 범용어 임베딩 공간에 정렬하는 스킵연결 오토인코더와 회귀 모델의 순차별 학습으로 구성되며, 학습된 두 모델의 추론을 통해 전문 어휘를 범용어 공간에 정렬할 수 있다. 제안 방법론의 성능을 검증하기 위해 2011년부터 2020년까지 수행된 국가 R&D 과제 중 '보건의료' 분야의 문서 총 77,578건에 대한 실험을 수행한 결과, 제안 방법론이 기존의 선형 벡터 정렬에 비해 코사인 유사도 측면에서 우수한 성능을 나타냄을 확인하였다.
최근 코로나19 팬데믹으로 인해 전 세계 경제와 외교 상황에 급격한 변화가 일어나고 있으며, 수출 의존도가 높은 한국은 이러한 변화에 큰 영향을 받고 있다. 본 연구에서는 기업의 수출전략 수립 및 의사결정 지원을 위해 차년도 수출액 예측 모델을 구축하고, 모델의 예측 결과를 바탕으로 수출 유망국가 추천 방식을 제안한다. 본 연구에서는 모델이 다양한 정보를 학습할 수 있도록 국가별, 품목별, 거시경제 변수 등 선행 연구에서 중요하게 사용된 변수를 다방면으로 수집하였다. 수집한 데이터를 분석한 결과, 국가와 품목에 따라서 수출액의 분포가 매우 비대칭적인 것을 확인할 수 있었다. 따라서, 모델의 예측 성능을 향상시키고 설명력을 확보하기 위해서 분리학습 방식을 사용하였다. 분리학습은 전체 데이터를 동질적인 하위 그룹으로 분리하고 개별 모델을 구축하는 방식으로, 본 연구에서는 수출액을 기준으로 5개 구간으로 데이터를 분리하였다. 모델 학습 과정에서 구간별 특성을 반영하여 구간1부터 구간4까지는 LightGBM을 사용하고, 구간5는 지수이동평균을 사용하였으며 이를 통해 모델의 예측 성능을 향상시킬 수 있었다. 모델의 설명력 확보를 위해서 추가로 구간별 모델의 SHAP-value를 계산하고 중요도가 높은 변수를 제시했다. 또한, 본 연구에서는 예측 모델을 기반으로 2단계 수출 유망국가 추천 방식을 제안했다. 효율적인 수출 전략 수립을 위해서 BCG 매트릭스와 국가별 점수 산출 방식을 사용하였고, 품목별 유망 국가 순위와 수출 관련 주요 정보들을 제공하였다. 본 연구는 다양한 정보를 학습한 머신러닝 모델로 여러 국가와 품목에 대한 예측을 실시하고, 이 과정에서 분리학습 방식으로 예측 성능을 향상시켰다는 점에서 의의가 있다. 또한, 현재 무역 관련 서비스들이 과거 데이터에 기반한 정보를 제공하고 있음을 고려할 때, 본 연구에서 제안한 예측 모델과 유망국가 추천 방식은 기업들의 미래 수출 전략 수립 및 동향 파악에 유용하게 사용될 수 있을 것으로 기대된다.
마늘파종기는 파종기구동부와 파종후 파종홀의 복토역할을 하는 파종기롤러, 지면과의 마찰을 통해 바퀴의 회전토크가 발생하며 발생된 토크는 파종기 내부 동력으로 전달되어 전체 파종시스템(배종, 호퍼캠, 파종부)을 동작 시키는 기능을 수행하는 파종바퀴, 마늘종구를 한알씩 집어올려 중간이송컵으로 이송하는 자세교정컵이 포함된 배종부와 자세교정컵에서 낙하된 마늘종구를 땅속으로 파종하는 파종장치로 구성된다. 배종율 95%, 2립 배종률 5% 성능을 확보할 수 있는 기술이 개발될 경우 세계적으로도 독보적인 기술 우위를 확보할 수 있다. 이와 같은 기본적인 기능을 구현할 수 있는 컨셉모델에 대한 설계를 수행하여 시제품개발 전 기구해석과 구조해석 등을 위한 기본설계를 수행하였다. 배종율 95% 이상을 확보하기 위해서는 기존의 현장경험의 의한 설계 방식으로는 한계가 있기 때문에 시뮬레이션 및 분석 개발이 필요한데, 프레임은 고정밀 마늘종구 배종부 장착을 위한 기본 구조물로써 작동시 동력을 얻기 위한 바퀴와 연계가 되도록 설계되었으며, 호퍼는 배종 수행을 위해 마늘을 저장해 두는 통으로써 배종부와 연결된다. 배종부의 배종판이 회전함에 따라서 배종판의 홈이 호퍼 내로 들어갔다 나오면서 마늘을 집게되며, 동력 전달부는 배종판을 회전시켜주고, 회전 속도 조절을 가능하게 한다. 파종부는 배종부에서 중간컵을 통해 하나씩 공급해준 마늘을 땅에 심는 부분으로서. 프레임의 바퀴 회전과 연동되어 회전하고 설계하였다. 배종판에서 중간컵으로 이송된 마늘을 파종부의 파종컵에 받아 회전하면서 땅속에 파종컵이 묻히면 파종컵이 열리면서 땅속에 마늘을 심는 원리이다. 조간조정은 7조식의 경우 초기설치시 고정되도록 설계되었으며 농촌진흥청 기계화 표준재배안에 따라 의성마늘 기준 $14{\times}14cm$(조간${\times}$주간)를 기준으로 개발하였다. 조간조정은 기계가 설치되면 조정하기 어려우므로 14cm로 설계하였으며, 주간조정은 원형배종장치의 구동기어부의 속도비로 간격을 조정할 수 있도록 기어장치를 설계하였다. 주간조정은 13에서 18cm의 범위에서 작동하도록 설계되었으며, 필요에 따라 간격조절이 가능함. 마늘은 그 크기가 다르고, 형상도 다르기 때문에 종자에 따른 개별적인 파종기술들이 개발되어야하기 때문에 개발 기간이 오래 걸리고, 수익에 비하여 개발비가 과다하게 요구되는 실정인데 축적된 시뮬레이션 툴을 이용한 파종기 분석 기술을 확보할 경우 다른 파종기의 연구 개발에도 크게 도움이 될 것으로 기대되며, 생육측정 실험과 동역학 해석 툴 RecurDyn을 통해 파종기의 기구학적 분석을 통한 설계반영 인자를 도출할 계획이다.
본 논문에서는 고출력 및 고효율 특성을 지니는 질화갈륨(gallium nitride, GaN) 고출력 트랜지스터 소자를 이용하여 WiMAX 및 LTE(long term evolution) 시스템에 사용 가능한 60watt급 고출력증폭기 모듈을 팔렛트(palette) 타입으로 개발한 결과에 대하여 기술한다. 높은 이득을 얻기 위한 라인업(lineup) 구성을 위해 저전력이면서 고이득을 지니는 전치증폭단, 8watt급의 GaN 구동증폭단, 그리고 30watt급 GaN 소자 2개를 도허티(doherty) 구조로 구성한 60watt 고출력증폭단을 사용하였으며, 이로부터 2.5~2.68GHz에서 61.4dB의 이득과 ${\pm}$0.075dB의 우수한 이득 평탄도를 얻었다. 특히 구동단과 고출력증폭단은 고효율 및 고출력 특성의 GaN 소자를 사용하였고, 또한 추가적인 효율 개선을 위해 도허티 구조를 적용함으로써 보다 높은 효율을 가지도록 하였다. 현재 전 세계적으로 널리 사용되고 있는 WiMAX 신호를 사용하여 제작된 팔렛트 타입의 증폭기 모듈의 성능을 측정하였는데, RRH(remote radio head) 타입으로 구성된 사용 예에서 WiMAX 변조 신호 10watt 출력 기준으로 약 37~38%의 효율을 나타내었다. 제작된 증폭기 모듈을 디지털 전치왜곡기(digital predistorter, DPD)와 연동하여 시험한 결과 WiMAX 변조 신호 10watt 출력에서 ACLR은 46dBc 이상의 특성을 지닌다.
영상기반의 교통정보수집시스템은 관리 및 운영상의 한계를 보이고 있는 기존의 루프검지기의 역할을 대체하는 검지기로써의 역할 뿐만 아니라 다양한 교통류의 정보를 제공하고 관리할 수 있으며, 교통사고의 발생전과 후의 순차적인 상황을 정확히 기록하고, 이 자료를 통해 발생된 교통사고의 사고 매커니즘을 객관적이고 명확하게 조명하고 분석하는 것은 교통사고 처리에 있어서 중요한 부분을 차지함으로서, 여러 나라에서 보급 활용되고 있다. 본 논문에서는, 기존 기술들이 연속류 도로의 특성인 속도변화, 교통량 변화, 점유율 변화와 같은 교통류 흐름을 반영하여 1차 예비판단을 실시하였다. 또한, 1차 예비판단된 경우 영상추출 및 처리를 통해 최종 사고판단을 실시하게 된다. 이 때, 도로상의 다양한 환경적 변화로 인해 극복하기 어려운 차량의 객체추출, 객체분리, 추적 등의 정확성을 확보하기 위해서 계산속도와 정확도 측면에서 우수함을 보이고 있는 Adaptive GMM(Gaussian Mixture Model) 기반으로 실시하였으며, 환경적인 요인으로 인해 자주 발생하고 있는 오 검지 상황들을 효과적으로 저감시킬 수 있는 능동적이고 환경적응적인 기법을 통해 사고 최종판단을 실시하였다. 이렇게 구현된 기술의 성능을 평가하고자 중부내륙 실험도로에서 12건의 사고 모의실험을 실시하였으며, 실제 운용되고 있는 장항IC에서의 사고영상을 실시간 온라인으로 입력받아 시험하였다. 결과적으로, 검지율 93.33%, 오검지 6.7%로 높은 신뢰성을 보였다.
아라미드는 일반적인 유기섬유와는 다른 우수한 역학적 성질을 바탕으로 보호의류 중에서 방탄방호 및 방검보호 의류에 사용되는 고부가 소재이다. 현재까지 ATY기계에서 사의 구조와 물성에 큰 영향을 미치는 Nozzle의 구조에 대한 연구결과는 많이 발표되어왔다. 그러나 최근 들어 소방방화방 검용 보호의류에 많이 사용되는 아라미드사에 ATY 공정 중에서 Nozzle의 직경이 ATY사의 물성에 어떤 영향을 미치는가에 대한 연구는 발표된 바가 없다. 따라서 본 연구에서는 Para-aramid/Nylon hybrid사를 이용하여 ATY로 제조할 경우, 표면에 생기는 loop로 인하여 타 소재와 접착시, 접착제 담지 성능이 향상되어 접착력이 상승되는 반면 아라미드 Hybrid사의 역학물성은 ATY가 가공되기 전의 물성보다 저하되는 약점을 가지고 있다. 따라서 본 연구에서는 ATY 제조공정에서 Nozzle의 직경을 달리할 때 Aramid/Nylon Hybrid ATY사의 물성변화를 분석함으로서 방화복과 방검용 보호의류에 적합한 아라미드 ATY사를 개발하고자 한다. 본 연구에서는 ATY 제조공정 중 다른 공정조건은 동일하게 하고 Nozzle의 직경을 0.6, 0.75, 1, 1.2mm로 변경하여 4가지 시료를 준비하고 물성분석을 위하여 제조된 시료의 강신도, 초기탄성률을 각각 측정하여 인장특성을 확인하였으며, 건열수축률과 습열수축률을 측정하여 시료의 열 수축률을 측정 분석하였다. 표면의 루프 발현 정도를 보기위하여 형태 불안정성을 측정 평가하였으며 영상현미경시스템을 사용하여 표면특성을 측정 평가하여 다음과 같은 결론을 얻었다. Nozzle의 직경이 증가함에 따라 절단강도는 30% 감소하였고 초기탄성률은 3배 가까이 감소하였다. 그리고 절단신도는 2배정도 증가하는 경향을 나타내었다. 또한 Nozzle의 직경이 증가함에 따라 ATY hybrid사의 건 습열수축률이 증가하다가 직경이 1.2mm일 때 감소하는 경향을 나타내었고 직경 변화에 따라 4~6%의 열 수축률의 분포를 보였다. Para-aramid/Nylon hybrid사의 형태불안정성은 0.3~0.5%를 분포를 나타내었고 Nozzle의 직경이 0.6, 1mm일 때 상대적으로 낮은 ATY의 불안정성이 확인되었다. Nozzle의 직경이 감소할수록 loop의 엉킴이 적으며 flat하였으며 직경이 1.2mm일 때 가장 조밀하고 표면에 loop가 많이 형성된 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.