• 제목/요약/키워드: 전환 시스템

검색결과 2,237건 처리시간 0.033초

The Market Segmentation of Coffee Shops and the Difference Analysis of Consumer Behavior: A Case based on Caffe Bene (커피전문점의 시장세분화와 소비자행동 차이 분석 : 카페베네 사례를 중심으로)

  • Yu, Jong-Pil;Yoon, Nam-Soo
    • Journal of Distribution Science
    • /
    • 제9권4호
    • /
    • pp.5-13
    • /
    • 2011
  • This study provides analysis of the effectiveness of domestic marketing strategies of the Korean coffee shop "Caffe Bene". It bases its evaluation on statistical outputs of 'choice attributes,' "market segmentation," demographic characteristics," and "satisfaction differences." The results are summarized in four points. First, five choice attributes were extracted from factor analysis: price, atmosphere, comfort, taste, and location; these are related to coffee shop selection behavior. Based on these five factors, cluster analysis was conducted, with statistical results classifying customers into three major groups: atmosphere oriented; comfort oriented; and taste oriented. Second, discriminant analysis tested cluster analysis and showed two discriminant functions: location and atmosphere. Third, cross-tabulation analysis based on demographic characteristics showed distinctive demographic characteristics within the three groups. Atmosphere oriented group, early-20s, as women of all ages was found to be 'walking down the street 'and 'through acquaintances' in many cases, as the cognitive path, and mostly found the store through 'outdoor advertising', and 'introduction'. Comfort oriented group was mainly women who are students in their early twenties or professionals, and appeared as a group to be very loyal because of high recommendation to other customers compared to other groups. Taste oriented group, unlike the other group, was mainly late-20s' college graduates, and was confirmed, as low loyalty, with lower recommendation activity. Fourth, to analyze satisfaction differences, one-way ANOVA was conducted. It shows that groups which show high satisfaction in the five main factors also show high menu satisfaction and high overall satisfaction. This results show that segmented marketing strategies are necessary because customers are considering price, atmosphere, comfort, taste, location when they choose coffee shop and demographics show different attributes based on segmented groups. For example, atmosphere oriented group is satisfied with shop interior and comfort while dissatisfied with price because most of the customers in this group are early 20s and do not have great financial capability. Thus, price discounting marketing strategies based on individual situations through CRM system is critical. Comfort oriented group shows high satisfaction level about location and shop comfort. Also, in this group, there are many early 20s female customers, students, and self-employed people. This group customers show high word of mouth tendency, hence providing positive brand image to the customers would be important. In case of taste oriented group, while the scores of taste and location are high, word of mouth score is low. This group is mainly composed of educated and professional many late 20s customers, therefore, menu differentiation, increasing quality of coffee taste and price discrimination is critical to increase customers' satisfaction. However, it is hard to generalize the results of study to other coffee shop brand, because this study have researched only one domestic coffee shop, Caffe Bene. Thus if future study expand the scope of locations, brands, and occupations, the results of the study would provide more generalizable results. Finally, research of customer satisfactions of menu, trust, loyalty, and switching cost would be critical in the future study.

  • PDF

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • 제24권2호
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China (인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로)

  • Lee, JaeWon;Oh, SangJin
    • Journal of Intelligence and Information Systems
    • /
    • 제26권3호
    • /
    • pp.71-90
    • /
    • 2020
  • Recently, the global insurance industry is rapidly developing digital transformation through the use of artificial intelligence technologies such as machine learning, natural language processing, and deep learning. As a result, more and more foreign insurers have achieved the success of artificial intelligence technology-based InsurTech and platform business, and Ping An Insurance Group Ltd., China's largest private company, is leading China's global fourth industrial revolution with remarkable achievements in InsurTech and Digital Platform as a result of its constant innovation, using 'finance and technology' and 'finance and ecosystem' as keywords for companies. In response, this study analyzed the InsurTech and platform business activities of Ping An Insurance Group Ltd. through the ser-M analysis model to provide strategic implications for revitalizing AI technology-based businesses of domestic insurers. The ser-M analysis model has been studied so that the vision and leadership of the CEO, the historical environment of the enterprise, the utilization of various resources, and the unique mechanism relationships can be interpreted in an integrated manner as a frame that can be interpreted in terms of the subject, environment, resource and mechanism. As a result of the case analysis, Ping An Insurance Group Ltd. has achieved cost reduction and customer service development by digitally innovating its entire business area such as sales, underwriting, claims, and loan service by utilizing core artificial intelligence technologies such as facial, voice, and facial expression recognition. In addition, "online data in China" and "the vast offline data and insights accumulated by the company" were combined with new technologies such as artificial intelligence and big data analysis to build a digital platform that integrates financial services and digital service businesses. Ping An Insurance Group Ltd. challenged constant innovation, and as of 2019, sales reached $155 billion, ranking seventh among all companies in the Global 2000 rankings selected by Forbes Magazine. Analyzing the background of the success of Ping An Insurance Group Ltd. from the perspective of ser-M, founder Mammingz quickly captured the development of digital technology, market competition and changes in population structure in the era of the fourth industrial revolution, and established a new vision and displayed an agile leadership of digital technology-focused. Based on the strong leadership led by the founder in response to environmental changes, the company has successfully led InsurTech and Platform Business through innovation of internal resources such as investment in artificial intelligence technology, securing excellent professionals, and strengthening big data capabilities, combining external absorption capabilities, and strategic alliances among various industries. Through this success story analysis of Ping An Insurance Group Ltd., the following implications can be given to domestic insurance companies that are preparing for digital transformation. First, CEOs of domestic companies also need to recognize the paradigm shift in industry due to the change in digital technology and quickly arm themselves with digital technology-oriented leadership to spearhead the digital transformation of enterprises. Second, the Korean government should urgently overhaul related laws and systems to further promote the use of data between different industries and provide drastic support such as deregulation, tax benefits and platform provision to help the domestic insurance industry secure global competitiveness. Third, Korean companies also need to make bolder investments in the development of artificial intelligence technology so that systematic securing of internal and external data, training of technical personnel, and patent applications can be expanded, and digital platforms should be quickly established so that diverse customer experiences can be integrated through learned artificial intelligence technology. Finally, since there may be limitations to generalization through a single case of an overseas insurance company, I hope that in the future, more extensive research will be conducted on various management strategies related to artificial intelligence technology by analyzing cases of multiple industries or multiple companies or conducting empirical research.

A Case Study on the Effective Liquid Manure Treatment System in Pig Farms (양돈농가의 돈분뇨 액비화 처리 우수사례 실태조사)

  • Kim, Soo-Ryang;Jeon, Sang-Joon;Hong, In-Gi;Kim, Dong-Kyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • 제18권2호
    • /
    • pp.99-110
    • /
    • 2012
  • The purpose of the study is to collect basis data for to establish standard administrative processes of liquid fertilizer treatment. From this survey we could make out the key point of each step through a case of effective liquid manure treatment system in pig house. It is divided into six step; 1. piggery slurry management step, 2. Solid-liquid separation step, 3. liquid fertilizer treatment (aeration) step, 4. liquid fertilizer treatment (microorganism, recirculation and internal return) step, 5. liquid fertilizer treatment (completion) step, 6. land application step. From now on, standardization process of liquid manure treatment technologies need to be develop based on the six steps process.

A Study on the Characteristics of Enterprise R&D Capabilities Using Data Mining (데이터마이닝을 활용한 기업 R&D역량 특성에 관한 탐색 연구)

  • Kim, Sang-Gook;Lim, Jung-Sun;Park, Wan
    • Journal of Intelligence and Information Systems
    • /
    • 제27권1호
    • /
    • pp.1-21
    • /
    • 2021
  • As the global business environment changes, uncertainties in technology development and market needs increase, and competition among companies intensifies, interests and demands for R&D activities of individual companies are increasing. In order to cope with these environmental changes, R&D companies are strengthening R&D investment as one of the means to enhance the qualitative competitiveness of R&D while paying more attention to facility investment. As a result, facilities or R&D investment elements are inevitably a burden for R&D companies to bear future uncertainties. It is true that the management strategy of increasing investment in R&D as a means of enhancing R&D capability is highly uncertain in terms of corporate performance. In this study, the structural factors that influence the R&D capabilities of companies are explored in terms of technology management capabilities, R&D capabilities, and corporate classification attributes by utilizing data mining techniques, and the characteristics these individual factors present according to the level of R&D capabilities are analyzed. This study also showed cluster analysis and experimental results based on evidence data for all domestic R&D companies, and is expected to provide important implications for corporate management strategies to enhance R&D capabilities of individual companies. For each of the three viewpoints, detailed evaluation indexes were composed of 7, 2, and 4, respectively, to quantitatively measure individual levels in the corresponding area. In the case of technology management capability and R&D capability, the sub-item evaluation indexes that are being used by current domestic technology evaluation agencies were referenced, and the final detailed evaluation index was newly constructed in consideration of whether data could be obtained quantitatively. In the case of corporate classification attributes, the most basic corporate classification profile information is considered. In particular, in order to grasp the homogeneity of the R&D competency level, a comprehensive score for each company was given using detailed evaluation indicators of technology management capability and R&D capability, and the competency level was classified into five grades and compared with the cluster analysis results. In order to give the meaning according to the comparative evaluation between the analyzed cluster and the competency level grade, the clusters with high and low trends in R&D competency level were searched for each cluster. Afterwards, characteristics according to detailed evaluation indicators were analyzed in the cluster. Through this method of conducting research, two groups with high R&D competency and one with low level of R&D competency were analyzed, and the remaining two clusters were similar with almost high incidence. As a result, in this study, individual characteristics according to detailed evaluation indexes were analyzed for two clusters with high competency level and one cluster with low competency level. The implications of the results of this study are that the faster the replacement cycle of professional managers who can effectively respond to changes in technology and market demand, the more likely they will contribute to enhancing R&D capabilities. In the case of a private company, it is necessary to increase the intensity of input of R&D capabilities by enhancing the sense of belonging of R&D personnel to the company through conversion to a corporate company, and to provide the accuracy of responsibility and authority through the organization of the team unit. Since the number of technical commercialization achievements and technology certifications are occurring both in the case of contributing to capacity improvement and in case of not, it was confirmed that there is a limit in reviewing it as an important factor for enhancing R&D capacity from the perspective of management. Lastly, the experience of utility model filing was identified as a factor that has an important influence on R&D capability, and it was confirmed the need to provide motivation to encourage utility model filings in order to enhance R&D capability. As such, the results of this study are expected to provide important implications for corporate management strategies to enhance individual companies' R&D capabilities.

The Advancement of Underwriting Skill by Selective Risk Acceptance (보험Risk 세분화를 통한 언더라이팅 기법 선진화 방안)

  • Lee, Chan-Hee
    • The Journal of the Korean life insurance medical association
    • /
    • 제24권
    • /
    • pp.49-78
    • /
    • 2005
  • Ⅰ. 연구(硏究) 배경(背景) 및 목적(目的) o 우리나라 보험시장의 세대가입율은 86%로 보험시장 성숙기에 진입하였으며 기존의 전통적인 전업채널에서 방카슈랑스의 도입, 온라인전문보험사의 출현, TM 영업의 성장세 等멀티채널로 진행되고 있음 o LTC(장기간병), CI(치명적질환), 실손의료보험 등(等)선 진형 건강상품의 잇따른 출시로 보험리스크 관리측면에서 언더라이팅의 대비가 절실한 시점임 o 상품과 마케팅 等언더라이팅 측면에서 매우 밀접한 영역의 변화에 발맞추어 언더라이팅의 인수기법의 선진화가 시급히 요구되는 상황하에서 위험을 적절히 분류하고 평가하는 선진적 언더라이팅 기법 구축이 필수 적임 o 궁극적으로 고객의 다양한 보장니드 충족과 상품, 마케팅, 언더라이팅의 경쟁력 강화를 통한 보험사의 종합이익 극대화에 기여할 수 있는 방안을 모색하고자 함 Ⅱ. 선진보험시장(先進保險市場)Risk 세분화사례(細分化事例) 1. 환경적위험(環境的危險)에 따른 보험료(保險料) 차등(差等) (1) 위험직업 보험료 할증 o 미국, 유럽등(等) 대부분의 선진시장에서는 가입당시 피보험자의 직업위험도에 따라 보험료를 차등 적용중(中)임 o 가입하는 보장급부에 따라 직업 분류방법 및 할증방식도 상이하며 일반사망과 재해사망,납입면제, DI에 대해서 별도의 방법을 사용함 o 할증적용은 표준위험율의 일정배수를 적용하여 할증 보험료를 산출하거나, 가입금액당 일정한 추가보험료를 적용하고 있음 - 광부의 경우 재해사망 가입시 표준위험율의 300% 적용하며, 일반사망 가입시 $1,000당 $2.95 할증보험료 부가 (2) 위험취미 보험료 할증 o 취미와 관련 사고의 지속적 다발로 취미활동도 위험요소로 인식되어 보험료를 차등 적용중(中)임 o 할증보험료는 보험가입금액당 일정비율로 부가(가입 금액과 무관)하며, 신종레포츠 등(等)일부 위험취미는 통계의 부족으로 언더라이터가 할증율 결정하여 적용함 - 패러글라이딩 년(年)$26{\sim}50$회(回) 취미생활의 경우 가입금액 $1,000당 재해사망 $2, DI보험 8$ 할증보험료 부가 o 보험료 할증과는 별도로 위험취미에 대한 부담보를 적용함. 위험취미 활동으로 인한 보험사고 발생시 사망을 포함한 모든 급부에 대한 보장을 부(不)담보로 인수함. (3) 위험지역 거주/ 여행 보험료 할증 o 피보험자가 거주하고 있는 특정국가의 임시 혹은 영구적 거주시 기후위험, 거주지역의 위생과 의료수준, 여행위험, 전쟁과 폭동위험 등(等)을 고려하여 평가 o 일반사망, 재해사망 등(等)보장급부별로 할증보험료 부가 또는 거절 o 할증보험료는 보험全기간에 대해 동일하게 적용 - 러시아의 경우 가입금액 $1,000당 일반사망은 2$의 할증보험료 부가, 재해사망은 거절 (4) 기타 위험도에 대한 보험료 차등 o 비행관련 위험은 세가지로 분류(항공운송기, 개인비행, 군사비행), 청약서, 추가질문서, 진단서, 비행이력 정보를 바탕으로 할증보험료를 부가함 - 농약살포비행기조종사의 경우 가입금액 $1,000당 일반사망 6$의 할증보험료 부가, 재해사망은 거절 o 미국, 일본등(等)서는 교통사고나 교통위반 관련 기록을 활용하여 무(無)사고운전자에 대해 보험료 할인(우량체 위험요소로 활용) 2. 신체적위험도(身體的危險度)에 따른 보험료차등(保險料差等) (1) 표준미달체 보험료 할증 1) 총위험지수 500(초과위험지수 400)까지 인수 o 300이하는 25점단위, 300점 초과는 50점 단위로 13단계로 구분하여 할증보험료를 적용중(中)임 2) 삭감법과 할증법을 동시 적용 o 보험금 삭감부분만큼 할증보험료가 감소하는 효과가 있어 청약자에게 선택의 기회를 제공할수 있으며 고(高)위험 피보험자에게 유용함 3) 특정암에 대한 기왕력자에 대해 단기(Temporary)할증 적용 o 질병성향에 따라 가입후 $1{\sim}5$년간 할증보험료를 부가하고 보험료 할증 기간이 경과한 후에는 표준체보험료를 부가함 4) 할증보험료 반환옵션(Return of the extra premium)의 적용 o 보험계약이 유지중(中)이며, 일정기간 생존시 할증보험료가 반환됨 (2) 표준미달체 급부증액(Enhanced annuity) o 영국에서는 표준미달체를 대상으로 연금급부를 증가시킨 증액형 연금(Enhanced annuity) 상품을 개발 판매중(中)임 o 흡연, 직업, 병력 등(等)다양한 신체적, 환경적 위험도에 따라 표준체에 비해 증액연금을 차등 지급함 (3) 우량 피보험체 가격 세분화 o 미국시장에서는 $8{\sim}14$개 의적, 비(非)의적 위험요소에 대한 평가기준에 따라 표준체를 최대 8개 Class로 분류하여 할인보험료를 차등 적용 - 기왕력, 혈압, 가족력, 흡연, BMI, 콜레스테롤, 운전, 위험취미, 거주지, 비행력, 음주/마약 등(等) o 할인율은 회사, Class, 가입기준에 따라 상이(최대75%)하며, 가입연령은 최저 $16{\sim}20$세, 최대 $65{\sim}75$세, 최저보험금액은 10만달러(HIV검사가 필요한 최저 금액) o 일본시장에서는 $3{\sim}4$개 위험요소에 따라 $3{\sim}4$개 Class로 분류 우량체 할인중(中)임 o 유럽시장에서는 영국 등(等)일부시장에서만 비(非)흡연할인 또는 우량체할인 적용 Ⅲ. 국내보험시장(國內保險市場) 현황(現況)및 문제점(問題點) 1. 환경적위험도(環境的危險度)에 따른 가입한도제한(加入限度制限) (1) 위험직업 보험가입 제한 o 업계공동의 직업별 표준위험등급에 따라 각 보험사 자체적으로 위험등급별 가입한도를 설정 운영중(中)임. 비(非)위험직과의 형평성, 고(高)위험직업 보장 한계, 수익구조 불안정화 등(等)문제점을 내포하고 있음 - 광부의 경우 위험1급 적용으로 사망 최대 1억(億), 입원 1일(日) 2만원까지 제한 o 금융감독원이 2002년(年)7월(月)위험등급별 위험지수를 참조 위험율로 인가하였으나, 비위험직은 70%, 위험직은 200% 수준으로 산정되어 현실적 적용이 어려움 (2) 위험취미 보험가입 제한 o 해당취미의 직업종사자에 준(準)하여 직업위험등급을 적용하여 가입 한도를 제한하고 있음. 추가질문서를 활용하여 자격증 유무, 동호회 가입등(等)에 대한 세부정보를 입수하지 않음 - 패러글라이딩의 경우 위험2급을 적용, 사망보장 최대 2 억(億)까지 제한 (3) 거주지역/ 해외여행 보험가입 제한 o 각(各)보험사별로 지역적 특성상 사고재해 다발 지역에 대해 보험가입을 제한하고 있음 - 강원, 충청 일부지역 상해보험 가입불가 - 전북, 태백 일부지역 입원급여금 1일(日)2만원이내 o 해외여행을 포함한 해외체류에 대해서는 일정한 가입 요건을 정하여 운영중(中)이며, 가입한도 설정 보험가입을 제한하거나 재해집중보장 상품에 대해 거절함 - 러시아의 경우 단기체류는 위험1급 및 상해보험 가입 불가, 장기 체류는 거절처리함 2. 신체적위험도(身體的危險度)에 따른 인수차별화(引受差別化) (1) 표준미달체 인수방법 o 체증성, 항상성 위험에 대한 초과위험지수를 보험금삭감법으로 전환 사망보험에 적용(최대 5년(年))하여 5년(年)이후 보험 Risk노출 심각 o 보험료 할증은 일부 회사에서 주(主)보험 중심으로 사용중(中)이며, 총위험지수 300(8단계)까지 인수 - 주(主)보험 할증시 특약은 가입 불가하며, 암 기왕력자는 대부분 거절 o 신체부위 39가지, 질병 5가지에 대해 부담보 적용(입원, 수술 등(等)생존급부에 부담보) (2) 비(非)흡연/ 우량체 보험료 할인 o 1999년(年)최초 도입 이래 $3{\sim}4$개의 위험요소로 1개 Class 운영중(中)임 S생보사의 경우 비(非)흡연우량체, 비(非)흡연표준체의 2개 Class 운영 o 보험료 할인율은 회사, 상품에 따라 상이하며 최대 22%(영업보험료기준)임. 흡연여부는 뇨스틱을 활용 코티닌테스트를 실시함 o 우량체 판매는 신계약의 $2{\sim}15%$수준(회사의 정책에 따라 상이) Ⅳ. 언더라이팅 기법(技法) 선진화(先進化) 방안(方案) 1. 직업위험도별 보험료 차등 적용 o 생 손보 직업위험등급 일원화와 연계하여 3개등급으로 위험지수개편, 비위험직 기준으로 보험요율 차별적용 2. 위험취미에 대한 부담보 적용 o 해당취미를 원인으로 보험사고(사망포함) 발생시 부담보 제도 도입 3. 표준미달체 인수기법 선진화를 통한 인수범위 대폭 확대 o 보험료 할증법 적용 확대를 통한 Risk 헷지로 총위험지수 $300{\rightarrow}500$으로 확대(거절건 최소화) 4. 보험료 할증법 보험금 삭감 병행 적용 o 삭감기간을 적용한 보험료 할증방식 개발, 고객에게 선택권 제공 5. 기한부 보험료할증 부가 o 위암, 갑상선암 등(等)특정암의 성향에 따라 위험도가 높은 가입초기에 평준할증보험료를 적용하여 인수 6. 보험료 할증법 부가특약 확대 적용, 부담보 병행 사용 o 정기특약 등(等)사망관련 특약에 할증법 확대, 생존급부 특약은 부담보 7. 표준체 고객 세분화 확대 o 콜레스테롤, HDL 등(等)위험평가요소 확대를 통한 Class 세분화 Ⅴ. 기대효과(期待效果) 1. 고(高)위험직종사자, 위험취미자, 표준미달체에 대한 보험가입 문호개방 2. 보험계약자간 형평성 제고 및 다양한 고객의 보장니드에 부응 3. 상품판매 확대 및 Risk헷지를 통한 수입보험료 증대 및 사차익 개선 4. 본격적인 가격경쟁에 대비한 보험사 체질 개선 5. 회사 이미지 제고 및 진단 거부감 해소, 포트폴리오 약화 방지 Ⅵ. 결론(結論) o 종래의 소극적이고 일률적인 인수기법에서 탈피하여 피보험자를 다양한 측면에서 위험평가하여 적정 보험료 부가와 합리적 가입조건을 제시하는 적절한 위험평가 수단을 도입하고, o 언더라이팅 인수기법의 선진화와 함께 언더라이팅 인력의 전문화, 정보입수 및 시스템 인프라의 구축 등이 병행함으로써, o 보험사의 사차손익 관리측면에서 뿐만 아니라 보험시장 개방 및 급변하는 보험환경에 대비한 한국 생보언더라이팅 경쟁력 강화 및 언더라이터의 글로벌화에도 크게 기여할 것임.

  • PDF

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • 제27권2호
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.