• 제목/요약/키워드: 전향 신경망 인식

검색결과 2건 처리시간 0.017초

2단계 신경망 추정에 의한 와이어 컷 방전 가공 조건 선정 (Selection of Machining Parameters of Electric Discharge Wire Cut Using 2-Step Neuro-estimation)

  • 이건범;주상윤;왕지남
    • 산업공학
    • /
    • 제10권3호
    • /
    • pp.125-132
    • /
    • 1997
  • We proposed a 2-step neural network approach for estimating machining parameters of electric discharge wire cut. The first step net, which is described as a backward neuro-estimation, is designed for estimating coarse cutting parameters while the second phase net, as a polishing forward neuro-estimation, is utilized for determining fine parameters. Sequential estimation procedure, based on backward and forward net, is performed using the net's approximation capability which is M to 1 and 1 to M mapping property. Experimental results an given to evaluate the accuracy of the proposed 2-step neuro-estimation.

  • PDF

딥러닝 알고리즘을 이용한 저선량 디지털 유방 촬영 영상의 복원: 예비 연구 (Radiation Dose Reduction in Digital Mammography by Deep-Learning Algorithm Image Reconstruction: A Preliminary Study)

  • 하수민;김학희;강은희;서보경;최나미;김태희;구유진;예종철
    • 대한영상의학회지
    • /
    • 제83권2호
    • /
    • pp.344-359
    • /
    • 2022
  • 목적 깊은 컨볼루션 신경망 기법을 결합한 영상 잡음 제거 알고리즘을 개발하고 이를 응용하여 저선량 유방 촬영 영상으로 유방암을 진단하는 데 그 효능을 조사하고자 한다. 대상과 방법 6명의 유방 영상 전문의가 전향적 연구에 참여하였다. 모든 영상 전문의는 병변 감지를 위해 저선량 영상을 독립적으로 평가하고 정성적 척도를 사용하여 진단 품질을 평가하였다. 영상 잡음 제거 알고리즘을 적용한 후, 동일한 영상 전문의가 병변 감지 가능성과 영상 품질에 대한 평가를 하였다. 임상 적용을 위해 동일한 영상 전문의가 병변 유형과 위치에 대한 합의 결정 후, 저선량 영상, 재구성된 영상, 기존 선량 영상을 무작위 순서로 제시하여 평가하였다. 결과 전 절제 표본의 저선량 영상을 참조로 40% 재구성된 영상에서 병변이 더 잘 인식되었다. 임상 적용단계에서 40% 재구성된 영상과 비교하여, 기존 선량 영상이 해상도(p < 0.001), 석회에 대한 진단 품질(p < 0.001), 유방 종괴, 비대칭, 구조왜곡의 진단 품질(p = 0.037)에 대해 더 높은 평균값을 보였다. 40% 재구성된 영상은 100% 영상과 비교 시 전반적 화질(p = 0.547), 병변의 가시성(p = 0.120), 대조도(p = 0.083)에서 비슷한 성적을 보였으며 유의미한 차이도 보이지 않았다. 결론 깊은 컨볼루션 신경망 기법을 결합한 효과적인 잡음 제거 및 영상 재구성 처리 알고리즘은 유방 촬영의 상당한 선량 감소를 위한 길을 열어 유방암 진단을 가능하게 할 것이다.