• 제목/요약/키워드: 전해 버제거

검색결과 10건 처리시간 0.023초

스탬핑 리드프레임의 버와 잔류응력 제거를 위한 전해연마의 적용 (The Application of Electropolishing for Removing Burrs and Residual Stress of Stamping Leadframe)

  • 신영의;김헌희;김경섭;코조후지모토;김종민
    • 마이크로전자및패키징학회지
    • /
    • 제8권3호
    • /
    • pp.19-24
    • /
    • 2001
  • 반도체 패키지에 사용되는 주요 재료인 리드프레임은 반도체 제품의 소형화, 박형화, 고집적 화에 대응하기 위해서 리드 및 피치의 미세화가 요구되며 제조 과정에서 발생되는 버(burr)의 제거와 잔류응력 제거에 대한 노력이 필요하다. 본 논문은 리드프레임의 제작 시 스탬핑 공정 중에 발생하는 버와 잔류응력을 제거하기 위해 전해연마를 적용하였다. 전해연마를 적용한 리드프레임은 표면의 버 등이 제거되었으며, 잔류음력은 실험에 사용된 전해액의 종류에 따라 차이가 있으나, 과염소산계의 경우에는 잔류응력을 23%제거하여 리드프레임의 신뢰성을 높일 수 있었다.

  • PDF

전해-자기 복합 가공을 이용한 미세 그루브형상의 가공 특성에 관한 연구 (Characteristic of EP-MAP for Deburring of Microgroove using EP-MAP)

  • 김상오;손출배;곽재섭
    • 대한기계학회논문집A
    • /
    • 제37권3호
    • /
    • pp.313-318
    • /
    • 2013
  • 전자기력을 이용한 자기연마 공정은 전통적 가공방식으로 버를 제거하기 힘든 비자성체의 소재 및 마이크로 형상의 가진 제품에 활용될 수 있는 새로운 정밀 디버링 방식이다. 그러나 이러한 자기연마법은 자기연마입자를 이용한 기계적 절삭력을 이용하고 있기 때문에 마이크로 단위의 구조물의 형상을 변형시킬 가능성이 높다. 따라서 본 연구에서는 탄소나노튜브-코발트 금속복합체를 이용한 전해-자기복합가공을 STS316 소재의 미세 그루브의 마이크로 디버링공정에 적용하고 그 특성을 분석하였다. 그 결과 자기연마공정을 적용한 공정에서는 공정 후 그루브에 생성된 버는 효율적으로 제거되었으나 그루브 끝단의 형상변화가 두드러지게 관찰되었다. 반면 전해-자기복합가공을 이용한 경우에는 재료제거율이 낮아 그루브 끝단의 형상변화 없이 디버링 공정이 진행됨을 확인하였다.

니티놀 형상기억합금의 표면 거칠기 향상 및 미세 버 제거를 위한 마이크로 전해연마의 가공특성 분석 (A Study for Improving Surface Roughness and Micro-deburring Effect of Nitinol Shape Memory Alloy by Electropolishing)

  • 신민정;백승엽;이은상
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.49-54
    • /
    • 2007
  • Electropolishing, the anodic dissolution process without contact with tools, is a surface treatment method to make a surface planarization using an electrochemical reaction with low current density. Nitinol is a metal alloy composed of Ni and Ti around 50% respectively which has shape memory effect. Nitinol can be put various applications which require purity and high pricision surface of products. The aim of this study is to investigate the characteristic of electropolishing effect for nitinol workpieces. In order to analyze the characteristics of electropolishing effect, surface roughness and micro-burr size were measured in terms of machining conditions such as current density, machining time and electrode gap. The tendencies about improvement of surface roughness and deburring effect by electropolishing for nitinol workpieces were determined.

입방정질화붕소입자 전착지석에 의한 전해디버링 시스템 (Electrochemical Deburring System by the Electroplated CBN Wheel)

  • 최인휴
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.430-438
    • /
    • 1997
  • Deburring and edge finishing technology as the final process of machining operation is required for manufacturing of advanced precise conponents. But, deburring is considered as a difficult problem on going to the high efficient production and automation in the FMS. Removal of burr couldn't have a standard of its definition because of its various shapes, dimensions and properties and mostly depends on manual treatment. Especially, deburring for cross hole inside is very difficult owing to its shape passing through out perpendicular to a main hole. The electrochemical method is suggested as its solution in practical aspect. Therefore, electrochemical deburring technology needs to be developed for the high efficiency and automation of internal deburring in the cross hole. In this study, the new process in the eliminating burr inside cross hole, electrochemical deburring by the wheel electroplated with Cubic-Boron-Nitrade abrasives, is suggested. Its deburring mechanism is described and machining performances is investigated. Also, CBN electroplated wheel is designed and manufactured and then characteristics of electrochemical deburring are investigated through experiments. Overall electrochemical deburring performance against burr inside cross hole is examined in the various power sources such as peak current and direct current.

입방정질화붕소입자 전착지석에 의한 전해디버링 시스템 (Electrochemical Deburring System by the Electroplated CBN Wheel)

  • 최인규;김정두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.19-23
    • /
    • 1996
  • Deburring and edge finishing technology as the last process of machining operation is required for manufacturing of advanced procesion components, duburring has treated as a difficult problem on going tothe highefficency, automation in the FMS. Removal of butt with various shapes, dimensions and properties coultn't has a standard and has depended on manual treatment. Especially, deburring for cross hole inside owing to passing through out perpendicular to a main hole is more difficult, the electrolytic method is proper as its solution at practical aspects. Therefore, for the high effciency and automation of intermal deburring in the cross hole, development of electrolytic debutting technology is needed. So, the new process in the burr treatment is supposed. In this study, in the eliminating burr inside cross hole, the principle and machining performances of electrochemical deburring by Cubic-Boron-Nitrade abrasive electroplate wheel are investigated, Design and manufacture of CBN electroplated wheel and analysis of characteristics with electrolytic debutting are achieved. Also deburring efficiency and electrolytic performance for cross hole were examined according to electrolytic current and electrolytic deburring condition corresponding to acquired edge quality was found out.

  • PDF

호닝의 버 생성 분석과 제거가공에 관한 연구 (Characteristics of Burr Generation and Deburring in Honing)

  • 최민석;김정두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.100-104
    • /
    • 1996
  • This paper describes the characteristics of micro-burr formation in the cross hatch and deburring in honed surfaces. Two types of micro-burrs formed in the cross hatch were defined as upper edge burr (type A) and side edge burr (type B). The size of micro-burrs were measured for the honed surfaces of several cross hatch angle. Deburring mechanism and system using magneto-electrolytic process including the abrasive pad for mechanic deburring effects together were introduced. Deburring experiments and analysis were carried out to confirm the effectiveness of the deburring process.

  • PDF

거버너샤프트 교차구멍 내경의 전해디버링 특성에 관한 연구 (A study on the characteristics of electrochemical deburring in the governor shaft cross hole)

  • 최인휴;김정두
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.1984-1991
    • /
    • 1997
  • Recently burr technology is rising in the fields of the precision manufacturing and the high quality machining, deburring has treated as a difficult problem on going to the high efficiency, automation in the FMS. Removal of burr with various shapes, dimensions and properties couldn't be standardized and has depended on manual treatment. Especially, deburring for cross hole inside owing to passing through out perpendicular to a main hole is more difficult, the electrochemical method is proper as its solution at practical aspects. Burr elimination in the cross hole drilling of governor shaft used in the automobile engine so far has been worked by a manual post-processing by a skillful worker, which becomes a factor of productivity-down and cost-up so that improvement of machining process is needed. Therefore, for the high efficiency and automation of internal deburring in the cross hole, development of electrochemical deburring technology is needed. So, the new process in the burr treatment is supposed. In this study, characteristics of electrochemical deburring through experiments were identified and factors such as electrolytic gap and electorlytic fluid contributed to removal burr height were analyzed. Also, deburring efficiency and electrolytic performance for cross hole were examined according to electrolytic current and electrochemical deburring condition corresponding to acquired edge quality was found out.

전해연마를 이용한 버 제거에 관한 연구 (A Study of Deburring using Electro-Chemical Method)

  • 강대철;전병희;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.217-220
    • /
    • 2001
  • In the shearing process the burr or rollover must be minimized in order to improve the quality of product. The burr size can be minimized by control of several process parameters. But removal of all burrs are impossible. Most mechanical type deburring methods (vibrating bowls, rotating barrels, shot blasting, for example.) will remove large burrs, other methods use chemical (electro-chemical deburring) or heat (thermal energy deburring). The electro-chemical deburring process removes burrs by the deplating method. Electro-chemical deburring equipment is requires a small capital investment than other methods(mechanical or thermal methods). Electro-chemical deburring method need to many parameters for control such as a time, voltage and concentration of electrolyte. In this paper shows relations of these parameters by experiment.

  • PDF