• Title/Summary/Keyword: 전해 동 박막

Search Result 4, Processing Time 0.019 seconds

Chemical Degradation of Tungsten Oxide Thin Films (텅스텐 산화물 박막의 화학적 퇴화)

  • Lee, Kil-Dong
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.141-149
    • /
    • 1995
  • The tungsten oxide thin films were prepared on $s_i$ wafer by using an electron-beam evaporation technique. Thickness and structure of tungsten oxide film degraded in various electrolytes were analyzed by Rutherford backscattering spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscope. Thickness of $WO_3$ film was the most dissolved in 1M $H_2SO_4$ electrolytye. We have confirmed that the degradation of this films was accelerated by $H_2O$ in electrolytes. But the electronic structure of film degraded by electrolyte contained of glycerol was not changed as comparision with as-deposited film. The degradation may be attributed to a change of thickness and the surface morphology of the film.

  • PDF

Development of Bulge Testing System for Mechanical Properties Measurement of Thin Films : Elastic Modulus of Electrolytic Copper Film (박막의 기계적 물성 측정을 위한 벌지 시험 시스템 개발: 전해 동 박의 탄성 계수)

  • Kim, Dong-Iel;Huh, Yong-Hak;Kim, Dong-Jin;Kee, Chang-Doo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1807-1812
    • /
    • 2007
  • A bulge testing system was developed to measure mechanical properties of thin film materials. A bulge pressure test system for pressurizing the bulge window of the film and a micro out-of-plane ESPI(Electronic Speckle Pattern Interferometric) system for measuring deflection of the film were included in the testing system developed. For the out-of-plane ESPI system, whole field speckle fringe pattern, corresponding to the out-of-plane deflection of the bulged film, was 3-dimensionally visualized using 4-bucket phase shifting algorithm and least square phase unwrapping algorithm. The bulge pressure for loading and unloading was controlled at a constant rate. From the pressure-deflection curve measured by this testing system, ain-plane stress-strain curve could be determined. In this study, elastic modulus of an electrolytic copper film 18 ${\mu}m$ was determined. The modulus was calculated from determining the plain-strain biaxial elastic modulus at the respective unloading slopes of the stress-strain curve and for the Poisson's ratio of 0.34.

  • PDF

전기적 착색 니켈 산화물 박막의 성능평가

  • 강기혁;고경담;김재완;양재영;이길동
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.158-158
    • /
    • 1999
  • NiO 박막은 전자비임증착법과 RF-스퍼터링법으로 제작하여 박막의 성능을 평가하였다. NiO 박막의 성능평가를 위한 착색과 탈색은 전기적 착색셀을 제작하여 순환전압전류법으로 KOH 전해질 내에서 반복수행하였으며 성능이 퇴화된 박막의 투과율은 가시광선 분광기로 측정하였다. XPS에 의한 분석결과 막의 낱알 내부보다 낱알 표면에 많은 산소가 포함될수 있음을 알 수 있었다. KOH 전해질 속에서 사이클이 반복 수행된 막의 표면 낱알의 형태는 변하였으며, 3$\times$10-4mbar에서 제작된 시료가 막의 안정성이 좋았다. 제작 방법에 다라 막에 주입 및 추출되는 전하밀도와 투과율의 차이가 나타났고, 니켈 산화물 박막의 성능평가를 하기 위해 착색효율을 계산하였다. 기판물질인 IT(indium tin oxide)의 전기적 착색성과 전해질이 전기적 착색성에 미치는 영향에 대해서도 논의되었다.

  • PDF

PREPARATION AND PROPERTIES OF EIECTROCHROMIC WINDOW COATING BY THE SOL-GEL METHOD (졸-겔 방법에 의한 전기적 착색 박막의 제작과 특성)

  • Lee, Kil-Dong
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.18-27
    • /
    • 1992
  • Multilayer coatings of $WO_3$ were deposited by the sol-gel technique on microscope slide glass and ITO coated glass. These films were characterized optically, chemically, and structurally by XRD, spectro-photometry, DTA/TGA, SEM/EDAX and RBS. Uniform $WO_3$ sol-gel films were dip coated on slide glass at dipping speed of 5mm/s. This sample indicated a low near IR transmittance in optical properties as a result of coloration using a dilute HCI electrolyte as the $H^+$ion sources. Differential thermal analysis results have allowed the accurate determination of the formation temperature of the $WO_3$ crystalline phase from the gel data in the range of $380^{\circ}C{\sim}500^{\circ}C$, consistent with crystallization temperature of sol-gel film. RBS spectrometry was performed on the uncolored $WO_3$ sol-gel film, yielding a chemical composition of $WO_3$.

  • PDF