• Title/Summary/Keyword: 전해질 처리

Search Result 156, Processing Time 0.025 seconds

Conflicting Physiological Characteristics and Aquaporin (JcPIP2) Expression of Jatropha (Jatropha curcas L.) as a Bio-energy Crop under Salt and Drought Stresses (바이오에너지 작물 소재로서 자트로파의 염과 가뭄 스트레스 하에서 상반되는 생리적 특성과 아쿠아포린(JcPIP2)의 발현)

  • Jang, Ha-Young;Lee, Ji-Eun;Jang, Young-Seok;Ahn, Sung-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.183-191
    • /
    • 2011
  • This study was undertaken to collect basic knowledge of Jatropha which is one of bio-energy crops, based on the understanding of physiological and molecular aspects under salt and drought conditions. The treatments were followed as: 100, 200 and 300 mM NaCl for salt stress and 5, 10, 20 and 30% PEG for drought stress for 8 days, respectively. Leaf growth, stomatal conductance, chlorophyll fluorescence and gene expression of aquaporin (JcPIP2) of Jatropha were investigated. From 2 days after treatments, plants treated with higher than 100 mM NaCl and 10% PEG respectively were significantly suppressed in leaf length, width, and stomatal conductance, but 5% PEG treatment showed that plant growth was improved more than control plant. Semi-quantitative RT-PCR analyses revealed that the JcPIP2 gene was expressed in root, stem, cotyledon and leaves. It was not detected in leaves at 200 and 300 mM NaCl treatments. However, transcripts of JcPIP2 were induced in roots and stems under salt and drought conditions compared to those of healthy plants. Therefore, it was concluded that JcPIP2 plays an important role in improving drought tolerance.

Survival and Physiological Response of Olive Flounder, Paralichthys olivaceus Exposed to Seawater Chlorinated by Chlorine Dioxide ($CIO_2$) (이산화염소($CIO_2$) 처리해수에 노출된 넙치, Paralichthys olivaceus의 생존과 생리적 반응)

  • 김흥윤;김진도
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • This study was conducted to estimate the effects of residual chlorine dioxide ($CIO_2$) in chlorinated seawater on survival and physiological responses (hematocrit: Ht, hemoglobin: Hb, serum electrolyte and glucose levels, and osmolality) of olive flounder, Paralichthys olivaceus. All the flounders were exposed for 10 min to different concentrations of residual $CIO_2$ just after chlorination for 1 min in each experimental aquarium (EA). ClO$_2$-free seawater was continuously supplied to each EA after 10 min exposure to $CIO_2$. By means of probit analysis, the median lethal times (LT$_{50}$, min) of flounder exposed to 0.43 and 0.51 ppm $CIO_2$, were at 103 and 32 min, respectively. In the range from 0.34 to 0.51 ppm $CIO_2$, the values of Ht, Hb, electrolytes and osmolality of fish exposed to $CIO_2$ were significantly elevated as elapsed time and residual concentrations of $CIO_2$ increased after chlorination. The levels of Ht, Hb, electrolytes and osmolality in flounder exposed to 0.27 ppm $CIO_2$ were not significantly different compared to control fish, which were maintained in $CIO_2$-free seawater; however, the levels of serum glucose were significantly increased with elapse times.

Effect of Anodic Oxidation of H2SO4/HNO3 Ratio for Improving Interfacial Adhesion between Carbon Fibers and Epoxy Matrix Resins (탄소섬유와 에폭시 기지의 계면강도 증가를 위한 황산/질산 양극산화에 관한 영향)

  • Moon, Cheol-Whan;Jung, Gun;Im, Seung-Soon;Nah, Changwoon;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In this work, the anodic oxidation of carbon fibers was carried out to enhance the mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites. The surface characteristics of the carbon fibers were studied by FTIR, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Also, the mechanical interfacial properties of the composites were studied with interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and critical strain energy release rate ($G_{IC}$). The anodic oxidation led to a significant change in the surface characteristics of the carbon fibers. The anodic oxidation of carbon fiber improved the mechanical interfacial properties, such as ILSS, $K_{IC}$, and $G_{IC}$ of the composites. The mechanical interfacial properties of the composites anodized at 20% sulfuric/nitric (3/1) were the highest values among the anodized carbon fibers. These results were attributed to the increase of the degree of adhesion at interfaces between the carbon fibers and the matrix resins in the composite systems.

Blocking Layer Coating on FTO Glass by Sol-Gel Method for Dye-Sensitized Solar Cell (염료 감응형 태양전지 효율 향상을 위한 졸-겔법을 이용한 차단막 코팅 방법)

  • Bae, Sang-Hoon;Han, Chi-Hwan;Kim, Do-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.96.1-96.1
    • /
    • 2010
  • 현재 태양광 시장에 진출한 대부분의 Si계열 태양전지는 복잡한 공정과 원재료 고갈, 높은 가격으로 인해 한계에 직면에 있는 상태이다. 최근 많은 연구소나 학교에서는 기존의 Si계열 태양전지를 대체할 대안으로 염료 감응형 태양전지에 대해서 높은 관심을 보이고 있으며, 그동안의 연구개발로 단위 셀 면적에서는 상용화에 근접한 효율을 확보한 상태이다. 염료 감응형 태양전지의 작동과정을 간단히 단계별로 살펴보면 나노 결정 산화물 반도체 표면에 흡착된 염료분자가 가시광선을 흡수하면 전자는 HOMO에서 LUMO로 천이하고 이 들뜬 상태의 전자는 다시 에너지 준위가 낮은 반도체 산화물의 전도띠로 주입된다. 주입된 전자는 나노 입자간 계면을 통하여 투명 전도성막으로 확산, 전달되고 산화된 염료분자는 전해질 I-에 의해 다시 환원되어 중성 분자가 된다. 그러나 표면상태 전자 중 일부는 산화된 염료와 다시 결합하거나, 전해질의 $I^{3-}$ 이온을 환원시키기도 한다. 이와 같은 과정은 암전류를 증가시키면서 반도체 전극 막의 성능을 저해하는 주원인이 된다. 전자의 재결합은 투명 전극을 통해서도 가능하기 때문에 투명 전극에 얇은 blocking layer를 도포한 후 나노 결정 산화물 반도체 전극을 제작하면 전지 특성을 향상시킬 수 있다. 본 실험에서 우리는 졸-젤 법으로 $TiO_2$ blocking layer 졸을 만들었고 간단하며 저가공정이 가능한 스크린 프린팅 방법으로 blocking layer를 형성하는 실험을 진행하였다. 전도띠 에너지가 높은 반도체 물질로 표면을 처리하면 $TiO_2$-전해질 간 계면에 에너지 장벽이 형성되어 재결합을 줄여 모든 광전특성이 향상 되었다.

  • PDF

Effect of Sulfate Source on Removal Efficiency in Electrokinetic Bioremediation of Phenanthrene-Contaminated Soil (Pnenanthrene-오염토양의 동전기 생물학적복원에서 제거효율에 대한 황산염원의 영향)

  • Kim, Sang-Joon;Park, Ji-Yeon;Lee, You-Jin;Yang, Ji-Won
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.428-432
    • /
    • 2006
  • This study investigated the effect of sulfate source on removal efficiency in electrokinetic bioremediation which needs sulfate to degrade contaminants by an applied microorganism. The representative contaminant and the applied microorganism were phenanthrene and Sphingomonas sp. 3Y, respectively. When magnesium sulfate was used, the magnesium ion combined with hydroxyl ion electrically-generated at cathode to cause the decrease of electrolyte pH, and then the microbial activity was inhibited by that. When ammonium sulfate and disodium sulfate were used to solve the pH control problem, the pH values of electrolyte and soil solution were maintained neutrally, and also the high microbial activity was observed. With the former sulfate source, however, ammonium retarded the phenanthrene degradation, and so the removal efficiency decreased to 12.0% rather than 21.8% with magnesium sulfate. On the other hand, the latter improved the removal efficiency to 27.2%. This difference of removal efficiency would be outstanding for an elongated treatment period.

Role of Electrode Reaction of Electrolyte in Electrokinetic-Fenton Process for Phenanthrene Removal (동전기-펜턴 공정에서 전해질의 전극반응이 처리효율에 미치는 영향)

  • Park Ji-Yeon;Kim Sang-Joon;Lee You-Jin;Yang Ji-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • The effects of electrolytes were investigated on the removal efficiency when several different electrolytes were used to change the electrode reaction in an electrokinetic (EK)-Fenton process to remediate phenanthrene-contaminated soil. Electrical potential gradient decreased initially due to the ion entrance into soil and then increased due to the ion extraction from soil under the electric field. Accumulated electroosmotic flow was $NaCl>KH_2PO_4>MgSO_4$ at the same concentration because the ionic strength of $MgSO_4$ was the highest and $Mg(OH)_2$ formed near the cathode reservoir plugged up soil pore to inhibit water flow. When hydrogen peroxide was contained in electrolyte solution, removal efficiency increased by Fenton reaction. When NaCl was used as an electrolyte compound, chlorine ($Cl_2$) was generated at the anode and dissolved to form hypochlorous acid (HClO), which increased phenanthrene removal. Therefore, the electrode reaction of electrolyte in the anode reservoir as well as its transport into soil should be considered to improve removal efficiency of EK-Fenton process.

Preparation of IPN-type Polyelectrolyte Films Attached to the Electrode Surface and Their Humidity-Sensitive Properties (전극 표면에 부착된 IPN 형태의 전해질 고분자의 제조 및 그들의 감습특성)

  • Han, Dae-Sang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.565-573
    • /
    • 2010
  • Copoly(2-(dimethylamino)ethyl methacrylate)(DAEMA)/butyl acrylate (BA) and copoly(methyl methacrylate)(MMA)/BA/2-(cinnamoyloxy)ethyl methacryate (CEMA), which were cross-linked with dibromoalkane and UV irradiation, respectively, were prepared for the precursors of interpenetrating polymer network (IPN) humidity-sensitive films. 3-(Triethoxysilyl)propyl cinnamate (TESPC) was used as a surface-pretreating agent for the attachment of IPN-polyelectrolyte to the electrode surface by UV irradiation. Humidity sensitive polymeric thin films with an IPN structure were prepared by crosslinking reactions of copoly(DAEMA/BA) with 1,4-dibromobutane (DBB) and copoly(MMA/BA/CEMA) by UV-irradiation. The anchoring of an IPN-polyelectrolyte into the substrate was carried out via the photochemical $[2{\pi}+2{\pi}]$ cycloaddition. The resulting humidity sensors showed a high sensitivity in the range of 20~95%RH and a small hysteresis (<1.5%RH). The response time for adsorption and desorption process at 33~94%RH was 48 and 65 s, respectively, indicating a fast response. The effects of the concentration of copolymers, molar ratio of crosslinking agents and time of the precursor solution for dip-coating on their humidity sensitive properties including water durability were investigated.

Allyl-isothiocyanate Content and Physiological Responses of Wasabia japonica Matusum as Affected by Different EC Levels in Hydroponics (고추냉이 수경재배시 배양액의 EC 수준이 Allyl-isothiocyanate 함량과 생리적 반응에 미치는 영향)

  • Choi, Ki-Young;Lee, Yong-Beom;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.311-316
    • /
    • 2011
  • This study aimed to determine the effect of EC (electrical conductivity) levels of nutrient solution in hydroponic culture on allyl-isothiocyanate (AITC) content within plant tissues, Vitamin C content and physiological responses in wasabi plant (Wasabia japonica M. 'Darma'). The 'Darma' was grown for 5 weeks with a deep flow technique (DFT) system controlled at 5 different EC levels, including 0.5, 1, 2, 3, and $5dS{\cdot}m^{-1}$. In result, the highest total content of AITC showed at EC level 5 and $3dS{\cdot}m^{-1}$ for 1 or 5- week, respectively. The total content of AITC increased about 1.2-1.4 times when the plants were grown in the EC levels between 0.5 and $2dS{\cdot}m^{-1}$, whereas the content decreased about 6 and 56 % in the EC level 3 and $5dS{\cdot}m^{-1}$, respectively. The content of AITC was relatively higher in petiole tissue, about 53 %, taken from 1 week-grown plants when the EC was controlled between 0.5 and $2dS{\cdot}m^{-1}$. Root tissue also had relatively higher content of AITC, about 45.1 %, when the EC was controlled at 3 and $5dS{\cdot}m^{-1}$. However, a 5-fold decrease in the AITC content was found in blade tissue and a 6.8-fold decrease in root when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. There was no significant difference in the vitamin C content in 1-week grown leaf tissues under the different EC level treatments; but, the content increased about 27% in 5-week grown plants at the EC level between 0.5 and $2dS{\cdot}m^{-1}$, compared to the 1 week-grown leaf tissue. Electrolyte leakage of leaf tissue taken from 3-week grown plant was 3-fold higher at the EC level $5dS{\cdot}m^{-1}$, compared to the EC level between 0.5 and $2dS{\cdot}m^{-1}$. Chlorophyll content, photosynthesis rate and transpiration rate were decreased when the EC was controlled at higher than $2dS{\cdot}m^{-1}$. Leaf water content, specific leaf area and growth were decreased when the EC was controlled at $5dS{\cdot}m^{-1}$ for 5 weeks. All the integrated results in this study suggest that the EC level of nutrient solution should be maintained at lower than $3dS{\cdot}m^{-1}$ in order to improve nutritional value and quantity required for hydroponically grown wasabi as functional vegetable.

Effect of Carbon Fiber on Electrical and Mechanical Properties of Epoxy/Graphite Bipolar Plate (에폭시/Graphite계 Bipolar Plate의 전기적, 물리적 성질에 미치는 Carbon Fiber의 영향)

  • Choi, Bum-Choul;Lee, J.J.;Lee, Jae-Young;Park, Yunkyeong;Lee, Hong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.92.1-92.1
    • /
    • 2011
  • 고분자 전해질 연료전지 (PEMFC)의 핵심 부품 중의 하나인 Bipolar Plate (분리판)을 제조하기 위해서 고분자/그라파이트 복합재료를 사용하였다. 고분자 매트릭스로는 경화시 뛰어난 화학적, 기계적 특성을 갖는 에폭시를 채택하였고, 전기 전도성을 부여하기 위해 그라파이트를 도입하였으며, 에폭시 수지의 내충격성을 향상시키기 위해서 Carbon Fiber를 채택하였다. 에폭시 분말과 그라파이트 분말, 그리고 1cm 정도의 길이를 갖는 Carbon Fiber을 믹서에 넣고 균일하게 혼합하였다. 이 혼합물을 이형제 처리된 몰드에 주입하고, Hot Press를 사용하여 가열, 가압 ($150^{\circ}C$, 4 ton/$cm^2$, 2시간)하면서 경화시켰다. 일정 비율로 고정된 에폭시/그라파이트 계에 Carbon Filber의 혼합 비율을 변화시키면서 전기적, 물리적 성질의 변화를 연구하였다.

  • PDF

Preparation of cation exchange membrane by heterogeneous sulfonation of polyethersulfone and characterization (Polyethersulfone의 heterogeneous sulfonation 을 통한 양이온교환막의 제조와 특성화)

  • 오종열;나성순;김학경;민병렬
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.137-138
    • /
    • 1997
  • 1. 서론 : 이온교환막이란 합성 폴리머의 이온교환수지를 막상으로 만든 것으로 고분자 매트릭스에 특정 전하가 고정되어 있어 이러한 성질 때문에 보통의 격막에서는 볼 수 없는 특징을 가지고 있으며 바닷물의 농축에 의한 소금의 제조, 탈염에 의한 공업용수 및 음료수의 제조, 도금공장의 폐수처리, 식품과 의약품공업, 고체 고분자 전해질에 근거한 수소생성 등에서 폭넓게 이용되고 있다. 본 연구에서는 상용막에 대체가능한 이온교환막을 제조하기 위하여 내열성, 내약품성, 내산성과 우수한 기계적성질 등을 가지고 있어 membrane 소재로 널리 사용되는 polyethersulfone(PES)를 술폰화시켜 sulfonated PES를 합성한 후 양이온 교환막을 제조하여 특성을 분석하였다.

  • PDF