• Title/Summary/Keyword: 전해질 누출률

Search Result 5, Processing Time 0.023 seconds

Freezing Hardiness of Several Pear Cultivars According to Degree and Duration of Low Temperatures (저온 처리 온도 및 지속 시간에 따른 배의 품종별 내동성 비교)

  • Yim, Sun-Hee;Choi, Jang-Jeon;Choi, Jin-Ho;Kim, Sung-Jong;Kwon, Yong Hee;Han, Jeom-Hwa;Lee, Han Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.51-58
    • /
    • 2014
  • Freezing hardiness of winter bud and branch of several pear (Pyrus pyrifolia) cultivars according to degree and duration of low temperatures was investigated by sprouting, electrolyte leaching rate and triphenyltetrazolium chloride (TTC). Sprouting rate as infected by degree and duration of low temperature were different between cultivars. The lower temperature, the longer duration, sprouting rate was decreased. Electrolyte leaching rate was showed above 30% at below $-30^{\circ}C$ treatment regardless of cultivars and duration. The lower temperature and the longer duration, Electrolyte leaching rate was increased. Electrolyte leaching rates of Manpungbae, Niitaka and Chuwhangbae at $-30^{\circ}C$ for 9 hours treatment which were observed high sprouting rate, were lower than those of other varieties. Absorbance rates by TTC test at $-21^{\circ}C$ treatment were 66.0 to 96.5% for 6 hours, 49.4 to 91.9% for 9 hours, and 37.3 to 89.4% for 12 hours. Freezing hardiness of pear cultivars at ecodormancy was different according to degree and duration of low temperature treatments.

Freezing Hardiness According to Dormancy Level and Low Temperature in Persimmon (Diospyros kaki) (감나무의 휴면정도 및 저온에 따른 내동성 비교)

  • Kim, Ho-Cheol;Bae, Kang-Soon;Bae, Jong-Hyang;Kim, Tae-Choon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.269-273
    • /
    • 2007
  • Freezing hardiness of winter bud and branch according to dormancy level and low temperature, in persimmon (Diospyros kaki) cultivars, was investigated by electrolyte leaching rate, triphenyltetrazolium chloride (TTC) test, and sprouting. Electrolyte leaching rate was lowest in branch of 20th January and was highest in the 20th March. The electrolyte leaching rate of 'Fuyu' and 'Cheongdobansi' was high in the 20th January and was low in the 20th February, but 'Uenishiwase' and 'Nishimurawase' was opposed to that. 'Hachiva' was the middle level in the cultivars. Absence rate by TTC test was highest in the 20th January and was low in the others. The 20th March had a great decrease in $-10^{\circ}C$ treatment. The absence rate of 'Fuyu' and 'Uenishiwase' was low in the 20th January and March and was high in the 20th February. 'Nishimurawase' and 'Hachiya' had a high level irrespective of dormancy level. Sprouting was highest in the 20th February and was lowest in 20th March. Most cultivars were not sprout in $-20^{\circ}C$ treatment and 'Fuyu', 'Nishimurawase' and 'Cheongdobansi' was a little high level irrespective of dormancy level. 'Hachiya' was only high in the 20th January. Thus, freezing hardiness of persimmon was very weak low temperature after dormancy breaking and was not different between astringent and non-astringent persimmon.

Influence of Low Temperature and Chilling Time on Freezing Hardness of Apple Dwarf-rootstocks and Main Cultivars in Korea (저온 및 저온경과시간이 사과나무 왜성대목 및 주요품종의 내동성에 미치는 영향)

  • Kweon, Hun-Joong;Sagong, Dong-Hoon;Song, Yang-Yik;Park, Moo-Yong;Yoon, Tae-Myung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.59-71
    • /
    • 2014
  • This study was conducted to find out the freezing hardness of apple tree as influenced by dwarfrootstocks, cultivars, and low temperature treatments. The dwarf-rootstocks used were M.9 and M.26, and three cultivars used were early-maturing 'Tsugaru', mid-maturing 'Hongro', and late-maturing 'Fuji'. Chilling temperatures were applied from $0^{\circ}C$ to $-40^{\circ}C$. Checking points of apple tree for freezing hardness were rootstock, trunk, feather, floral bud and foliar bud. Investigations were evaluated by the measure of water loss, electrolyte leaching, and sprouting. The results did not show the differences in water loss, electrolyte leaching, and sprouting by dwarf-rootstocks. Water loss of 'Fuji' was lower than that of 'Tsugaru' and 'Hongro', but sprouting ratio of 'Fuji' was higher than that of 'Tsugaru' and 'Hongro'. Water loss and electrolyte leaching increased as treated by lower temperature, while sprouting ratio decreased. In $-35^{\circ}C$ treatment, sprouting of rootstock and trunk part were higher than that of feather, while sprouting of floral bud was lower than that of foliar bud. Sprouting of bourse shoot at the accumulated low temperature in terms of $-10^{\circ}C$ per day was 100% in the 28 days, and sharply decreased about 50% in the 35 days. In conclusion, there were no differences in freezing hardness between M.9 and M.26, but freezing hardness of late-maturing cultivar was tended to stronger than that of early-maturing and mid-maturing cultivars. Freezing hardness of floral bud was extremely weak $-30^{\circ}C$.

Fruit Productivity and Cold Hardiness as Affected by Fruit Setting of 'Wonhwang' Pear Trees ('원황' 배의 착과량 조절이 과실생산성과 내한성에 미치는 영향)

  • Kim, Byeong-Sam;Cho, Kyung-Chul;Ma, Kyung-Chul;Yun, Bong-Ki;Jung, Seok-Kyu;Choi, Hyun-Sug
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.64-71
    • /
    • 2017
  • The study was performed on the effects of crop load of pear (Pyrus pyrifolia Nakai) trees on shoot growth, reserved nutrients, and fruit production for two years, as well as regrowth of cuttings treated with various cold temperatures in 2012 and 2013. Crop load adjustments included three levels of fruiting; 54 (60%), 90 (100%), and 126 fruits per tree (140%). As increasing crop load from 60% to 140%, water sprout growth decreased, and one-year old shoot resulted in declined concentrations of total carbon, macro-nutrients, and free sugar. The 140% of crop load greatly increased fruit yield of approximately 35 tons per ha in both 2011 and 2012 but slightly reduced weight, size, and soluble solid contents in fruit. However, 140% of crop load increased annual production income to approximately over 10 million won compared to the 60% and 100% of crop load. Germination rates in the cuttings did not rapidly decrease up to $-20^{\circ}C$ in a growth chamber condition. The 140% of crop load decreased germination rates less than 70% of cuttings grown under $-30^{\circ}C$. Amounts of electrolyte leakage in the cuttings under various cold temperatures were not significantly different among the adjustment of crop load.

Fruit Quality of 'Wonhwang' Pear Trees with Low-pesticides and In Vitro Regrowth of Stem Cuttings as Affected by Time of Defoliation (시기별 적엽이 저농약 '원황'배의 과실품질과 삽수의 기내 재생장에 미치는 영향)

  • Kim, Byeong-Sam;Cho, Kyung-Chul;Ma, Kyung-Chul;Yun, Bong-Ki;Jung, Seok-Kyu;Han, Jeom-Hwa;Choi, Hyun-Sug
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.469-480
    • /
    • 2015
  • The study was conducted on the effects of time of defoliation on fruit quality of pear (Pyrus pyrifolia Nakai) trees, managing with low-pesticides, and regrowth of stem cuttings in vitro. Treatments included for 40% of uniform defoliation at early-August, end-August, and early-September, as well as control (no defoliation). Defoliation at early-September and control increased growth of water sprouts as well as concentrations of carbohydrates, total nitrogen, and free sugar in one-year old shoots. Defoliation at early-September and control increased fruit yield and mean fruit weight, with high soluble solids content and fruit surface color of $a^*$ observed for both defoliation at end-August and early-September. Defoliation at early-August increased rates of electrolyte leakage in stem cuttings at $-18^{\circ}C$ in vitro. There were no significantly different for germination rates of the cuttings between the treatments at -18 and $-21^{\circ}C$ in vitro, with the highest germination of the cuttings observed for defoliation at early-September and control at $-27^{\circ}C$. Therefore, orchard management should be performed to be minimized for defoliation of the spur leaves until end-August, causing from precipitation and pests.