• Title/Summary/Keyword: 전파 관측

Search Result 438, Processing Time 0.03 seconds

Development of X-Band weather radar quality control technology for non-weather echo removal (비기상에코 제거를 위한 X-밴드 기상레이더 품질관리 기술 개발)

  • Jin-woo Park;Sun-Jin Mo;Ji-Young Gu;Seungwoo Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.114-114
    • /
    • 2023
  • 기상레이더는 대류권의 기상 관측에 널리 사용되며, 기상예보를 비롯하여 항공, 농업, 수문학 등 다양한 분야에서 활용하고 있다. 기상레이더센터는 SSPA(Solid State Power Amplifier) 기반 X-Band 주파수대역(9GHz)을 사용하는 연구용 소형기상레이더 관측망을 운영하고 있다. 주로 수도권 저층 대기에서 발생하는 위험 기상현상을 1분 단위로 빠르게 관측하면서 정확한 강수 정보생산을 위한 연구를 수행하고 있다. 레이더 관측 자료는 전파를 이용하여 넓은 범위에 분포하는 눈, 비, 우박 등 대기수상체를 관측하여, 강수량 추정을 통해 강수 정보를 생산한다. 이에 따라 레이더 관측 자료의 정확성과 신뢰도를 높이기 위해서 레이더 품질관리 기술 적용은 필수적이다. 기상레이더센터는 소형기상레이더로 관측한 이중편파 자료의 효과적인 품질관리를 위한 각종 자료처리 모듈을 개발하여, 실시간 자료처리 프로그램에 적용하였다. 우선, 저층 대기 관측 시 기상에코와 더불어 강한 반사도로 나타나는 지형에코를 판별하는 모듈과 선형 또는 쐐기형태의 전파간섭에코를 비롯한 비기상에코를 효과적으로 제거하는 기술을 개발하였다. 다음으로, X-Band 주파수대역 기상레이더 관측 자료의 취약점인 강한 강수 시 발생하는 반사도 감쇠 현상을 보정하기 위한 기술도 개발하였다. 소형기상레이더 품질관리 개발과 적용을 통하여 생산된 자료는 HSR(Hybrid Surface Rainfall), 레이더 강수량 추정, 대기수상체 등 다양한 기상 산출물 생산과 동시에 기상 감시 및 연구 분야에 효과적으로 활용하고 있다.

  • PDF

Development and Test Result of Fast Digital Conversion System with Variable Sampling Frequencies for Astronomical Radio Siginal Processing (우주 전파 신호 처리용 가변 샘플링 고속 디지털 변환 장치 개발)

  • Kang, Yong-Woo;Song, Min-Gyu;Kim, Hyo-Ryoung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1175-1182
    • /
    • 2021
  • The receiver of each radio telescope of KVN, has a sampler that converts astronomical radio signal to digital data. The ability of this sampler (the bandwidth, sampling frequency, and sampling bits) is improved by sqrt(n), if the bandwidth is increased by n times, and the number of observable objects increases exponentially in the case of continum spectrum radio sources. As the bandwidth increases, there are the more spectrum lines that can be simultaneously monitored in the radio source. This will greatly expand the research area in astronomical radio observation. For this reason, we are trying to independently develop the technology of the fast digital sampler. Therefore, based on the research experience and technology accumulated so far, An ability of sampling up to 3.5 GHz, that can vary the sampling frequency and can observe in a wider band, was designed and made for proto-type. In this study, we introduce the development details and test results for new sampling system.

LCD 백라이트용 형광램프에서의 광 방출 광의 전파

  • Im, Yu-Ri;Han, Guk-Hui;Jeong, Jong-Yun;Im, Hyeon-Gyo;Jo, Yun-Hui;Kim, Hyeon-Cheol;Yu, Dong-Geun;Jo, Gwang-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.417-417
    • /
    • 2010
  • 작은 직경의 외부 전극 형광램프와 냉음극 형광램프는 LCD-TV의 광원으로 사용하고 있다. 교류 전압으로 구동되는 외부전극 형광램프와 교류 및 직류 전압으로 구동되는 냉음극 형광램프에서 광 방출 신호를 관측하였다. 이러한 빛은 양광주의 고전압부에서 접지부로 $10^5-10^6\;m/s$의 속도로 전파한다. 램프에서 방출된 광이 양광주를 따라 전파하는 현상은 일반 형광등과 네온싸인관에서도 동일하게 관측된다. 이러한 빛의 전파 현상은 지난 70년의 형광 램프 역사상 처음 관측되었다. 양광주 영역의 플라즈마는 높은 전압과 수 십 kHz가 인가되는 전극부에서 발생한 고밀도 플라즈마의 확산으로 생성된다. 고전압이 인가된 전극부에서 발생한 고밀도의 플라즈마는 인가되어지는 구동 주파수에 해당하는 섭동으로 작용하여 플라즈마 파동으로 양광주 영역으로 전파된다. 이러한 플라즈마 파동은 고밀도 전극부에서 저밀도 양광주 영역으로 플라즈마 밀도의 차이에 의하여 된다. 이때 파동의 전파 속도는 관 전류에 따라 달라진다. 타운젠트 방전 이전의 저 전류일 때는 ${\sim}10^5\;m/s$이며, 타운젠트 방전 이후 글로우 방전에서의 전파 속도는 ${\sim}10^6\;m/s$로 증가한다. 또한 타운젠트 방전 이전의 저 전류에서는 파동이 감쇠하는 경향을 보이며, 고 전류에서의 파동의 감쇠는 매우 작다. 관측된 광신호의 결과로부터 전파되는 파동의 원인은 플라즈마 확산에 의한 밀도의 차이에 의한 것으로 해석된다. 즉, 수 십 kHz의 구동 주파수를 갖는 플라즈마 파동이 양광주의 플라즈마 밀도 구배에 의하여 전파된다. 이러한 파동은 높은 전압이 인가되는 전극부에서 낮은 전압부로 향하는 조류의 흐름과 같이 나타난다.

  • PDF

Current status of development of 4GHz High Speed Sampler for KVN

  • Kang, Yong-Woo;Je, Do-Heung;Byun, Do-Young;Song, Min-Gyu;Jung, Taehyun;Nam, Wook-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.56.3-56.3
    • /
    • 2015
  • 한국우주전파관측망은 22GHz, 43GHz, 86GHz, 129GHz의 4주파수 동시관측 시스템을 운용하고 있다. 이 시스템으로부터 수신된 전파신호를 실시간으로 디지털 신호로 바꾸어 주는 장치인 샘플러의 국산화를 위하여, 우리는 3년간의 연구개발로 1GHz 샘플링을 할 수 있는 샘플링 장치를 설계/제작하였다. 그리고, 이를 연구 관측에 실제 적용할 수 있음을 보여 주었다. 본 연구에서는 한 단계 더 나아가 광대역 관측과 e-VLBI 구현을 위하여 전파관측 자료를 직접 첨단 연구망으로 보낼 수 있는 4GHz 샘플러를 개발 중에 있다. 이번 발표에서는 4GHz 샘플러에 대한 개발 현황 및 향후 계획을 소개한다.

  • PDF

Launch of Open-Use Operation of the East-Asian VLBI Network (동아시아 VLBI 관측망 공동이용관측 시작)

  • Wajima, Kiyoaki;Hada, Kazuhiro;Jung, Taehyun;Oh, Se-Jin;Roh, Duk-Gyoo;Jiang, Wu;Cui, Lang;Byun, Do-Young;Kim, Jongsoo;Honma, Mareki;Shen, Zhi-Qiang;Wang, Na
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2018
  • 동아시아 VLBI 관측망(East-Asian VLBI Network; EAVN)은 한 중 일 각국의 전파망원경을 통합해서 구성되는 동아시아 지역의 새로운 VLBI 네트워크이다. EAVN은 2013년부터 공동이용관측을 실시하고 있는 한일 VLBI 관측망(KaVA)을 중심으로 총 20개 전파망원경을 포함한다. 4개 주파수(6.7/8/22/43 GHz)로 관측할 수 있으며, 최대로 0.6 mas (22 GHz)의 해상도로 관측할 수 있는 기능을 가지고 있다. 우리는 2017년 3월부터 5월까지 EAVN을 이용한 총 17번의 AGN 관측 캠페인을 실시하였다. 이것은 ALMA를 이용한 Event Horizon Telescope (EHT) 관측과 같은 시기에 실시되며, 총 15개의 전파망원경이 참가하였다. 이 관측을 통해서 EAVN으로 얻은 영상이 KaVA의 영상에 대해 80% 정도 성능이 개선되는 것을 확인하였다. 또한, 주된 관측천체인 M87과 Sgr A*의 영상은 과거의 결과를 재현해서 AGN 중심 주변의 sub-pc 스케일의 제트 구조를 보다 자세히 볼 수가 있었다. 이 결과에 의거해서 우리는 KaVA의 관측시간의 일부를 이용해서 2018년 하반기부터 EAVN의 공동이용관측을 시작한다. 공개될 범위는 KaVA, 일본 Nobeyama 45 m, 중국 Tianma 65 m의 총 9개 망원경이며, 중국 Nanshan 26 m 망원경도 Large Program 관측에 한해서 참가한다. 관측주파수는 22 GHz (KaVA + Tianma) 및 43 GHz (KaVA + Tianma + Nobeyama) 이며, 오는 관측시즌(2018년 8월부터 2019년 1월까지)에 제공될 총 관측시간은 100 시간이다. 관측제안서 제출 마감날은 6월 1일이며, 많은 관측제안서가 제출될 것을 기대한다. 이 발표에서는 EAVN AGN 캠페인의 결과 및 EAVN 공동이용 관측의 자세한 내용을 보고한다.

  • PDF

TRAO를 이용한 ORION A의 $^{12}CO$, $^{13}CO$ 관측

  • Kim, Yeong-Sik;Kim, Gwang-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.78.2-78.2
    • /
    • 2012
  • Orion A 분자운은 별탄생이 활발하게 일어나는 영역이면서 태양계에 비교적 가깝다. 그렇기 때문에 낮은 분해능으로도 자세한 관측이 가능하다. Orion A 분자운까지의 거리가 450 pc 이므로 대덕전파안테나 1' beam으로 0.13 pc 가 된다. 이곳에는 필라멘트 구조가 있는데 FCRAO를 통한 다파장관측을 통해서 필라멘트 구조가 확인되었다.(Melnick et al. 2011). 필라멘트는 길이 4.8 pc, 너비 1.5 pc 로 대덕전파망원경의 1' beam으로 자세한 관측이 가능하였다. 2010년 11월-2011년 5월까지 Orion A 분자운을 대덕전파망원경을 이용하여 $^{12}CO$, $^{13}CO$(J=1-0) 분자선 관측을 하였으며, 관측영역은 적경: 5h 32m - 5h 37m, 적위: $-5^{\circ}$ 14' - $-5^{\circ}$ 37'으로 ($1^{\circ}{\times}1^{\circ}$) 영역을 관측하였다. 그 결과 필라멘트구조를 확인할 수 있었으며 일자 형태로 분포되어 있다는 구조적 결과 얻었다. 관측된 필라멘트 덩어리의 전형적인 크기는 약 0.7 pc, 밀도는 약 $10^4cm^{-3}$, 질량은 약 500 $M_{\odot}$이다. 매우 밀한 곳은 1000 M${\bigodot}$이상의 질량분포도 나타내고 있다. 이것은 이 지역이 일반적인 분자운과 비교했을 때 고밀도 영역임을 나타내고 있다. 더욱 자세한 밀도구조와 질량분포를 밝혀보고 별탄생과의 관련성을 연구하고자 한다.

  • PDF

Construction and development history of Korean VLBI Network

  • Cho, Se-Hyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.50.4-51
    • /
    • 2015
  • 대덕 14m 전파망원경에 의한 밀리미터파 관측연구 경험을 바탕으로 시작된 한국우주전파관측망 (Korean VLBI Network: KVN) 사업은 2001년 예산이 확보됨으로써 본격화되기 시작하였다. 현재는 짧은 밀리미터파 대역을 포함한 22/43/86/129 GHz 대역의 세계 최초 4밴드 동시관측 시스템으로서 국제적 주목을 받으며 국내는 물론 일본 중국 대만의 동아시아지역 공동활용과 세계적 오픈도 눈앞에 두며 그 핵심과학연구에 진입하는 단계에 와있다. 여기에서는 그 동안의 KVN 건설, 수신시스템, 한일 상관기 및 공동네트워크 구축, 연구관측에 이르기까지 걸어온 길과 앞으로의 방향을 조명해 본다.

  • PDF

Development and Observation Result of High Speed Digital Conversion System of Astronomical Radio Siginal (우주 전파 신호의 고속 디지털 변환 장치 개발과 적용)

  • Kang, Yong-Woo;Song, Min-Gyu;Wi, Seog-Oh;Je, Do-Heung;Lee, Sung-Mo;Kim, Seung-Rae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1009-1018
    • /
    • 2017
  • We developed new Digital Sampler for KVN(: Korean VLBI Network). The sampler has 1024MHz sampling frequency with 2bits/sample. The sampler's input reference frequencies are 1pps(: pulse per second) and 10MHz, also UTC(: Universal Time Coordinated) time information out with 1PPS signal, synchronized. The output of sampling data is adapted VSI(: VLBI Standard Interface) specification including the time information. In order to confirm the performance of the sampler, we carried out the astronomical radio observation test in Ulsan Radio Observatory of KVN. It was confirmed the stable performance. In this paper, We introduce the new developed sampler and present the observational test result.

A STUDY ON THE RADIO PROPAGATION IN THE KOREAN IONOSPHERE (한반도 전리층에서의 전파 전파연구)

  • 배석희;최규홍;육재림;김홍익;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.69-88
    • /
    • 1992
  • The effects of the ionosphere on the radio wave propagation are scattering of radio waves, attenuation, angle error, ranging error, and time delay. If ionospheric conditions are suitable, the charged particles can remove energy from radio waves and thus attenuate the signal. Also, a radio wave traveling a path along which the electron density is not constant undergoes changes in direction, positon and time of propagation. The present study is based on Korean ionospheric data obtained at the AnYang Radio Research Institute from Jan. 1985 through Oct. 1989. The data are used to simulate the Korean ionosphere following the Chapman law. The effects of the model ionosphere on the radio wave propagation, such as the angle, position error, time delay, and the attenuation, are studied for the various cases of the wave frequency and the altitude.

  • PDF

TRANSIT OF THE INTERPLANETARY SHOCKS ASSOCIATED WITH TYPE II RADIO BURSTS WITHIN 1AU (Type II 전파폭발이 관측된 행성간 충격파의 1AU 내에서의 전파 과정)

  • Oh, Su-Yeon;Yi, Yu;Kim, Yong-Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2007
  • Among the interplanetary shock (IP shock)s observed by ACE spacecraft at 1AU during 1997 to 2000, we have selected 31 IP shocks which had triggered the interplanetary type II radio bursts detected by the WIND spacecraft while those shocks were leaving the Sun. We compared the observed IP shock propagation speeds and the IP shock transit speeds estimated by time difference between the interplanetary type II radio burst detection and the IP shock observation. Then, we found that the mean acceleration of the IP shocks between the Sun and the Earth is about $-1.02m/sec^2$, which means the deceleration contrary to the positive acceleration predicted by Parker solar wind model. It is also verified that the acceleration of the IP shock does not show any linear correlation with the shock propagation speed and the Mach number of the IP shock.