• Title/Summary/Keyword: 전체교량

Search Result 218, Processing Time 0.026 seconds

LCA-based Environmental Impact Analysis for Prestressed Concrete Girders (프리스트레스 콘크리트 거더의 LCA기반 환경영향 분석)

  • Choi, Gyeong-Chan;Kim, Do-Hoon;Park, Jin-Young;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.69-76
    • /
    • 2020
  • Bridges which are components of road network consume large amounts of resources such as concrete and steel materials, which have large environmental impacts during construction. This causes a great environmental burden. In order to reduce the environmental impact caused by the construction of the bridge, the environmental impact should be reviewed based on reasonable data in the early design stage. The purpose of this study is to provide basic data for LCA-based environmental impact assessment in the process of selecting bridge type in the early design stage. For this purpose, design data for four types of PSC bridges (general PSC girder, IPC girder, e-Beam, DR girder) were collected and LCA was performed to analyze the basic unit value and impact factors of environmental load. The results of the analysis showed that the environmental impact of IPC girder was the smallest, and the environmental impact of e-Beam was 133.7% higher than that of IPC girder. In addition, concrete, reinforcement, PC strand, square timber, sheath pipe, and steel plate were derived as the main factors that generate 98.5% of the overall environmental impact of PSC girder.

Spectra of Road Surface Roughness on Bridges of Minor Road (지방도 도로교 노면조도의 스펙트럼)

  • Chung, Tae Ju;Cha, Bong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.757-767
    • /
    • 2016
  • The power spectral density (PSD) for the road surface roughness on the bridges of minor roads in Wonju city and Hoengseong-gun, Gangwon-do is presented. To obtain the PSD, the road surface roughness on 18 different bridges with various superstructure type and span is measured by GPS at every 10 to 30cm interval. Assuming the PSD as the stationary normal probability process with zero mean value, the PSD of measured road surface roughness is obtained by applying the Maximum Entropy Method (MEM). A simple formula in evaluating the PSD of RC slab bridge, Rahmen bridge and PSC I-girder bridge which is applicable to the dynamic response analysis of bridges considering the road surface roughness is proposed. Using the calculated PSD curves, the road surface conditions on the 18 bridges are evaluated. The statistical relationship between the PSD and the IRI is presented by applying linear regression and correlation analysis.

A Research on how to turn Object oriented Database of civil materials to practical use (객체지향 Data Base를 이용한 토목자재 정보의 이용방안 연구)

  • Kwon, Oh-Yong;Han, Chung-Han;Kim, Do-Keun;Jo, Chan-Won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.708-711
    • /
    • 2008
  • This study is intended to build research for ways to utilize material information in the design and working business for public works. The contents and results of this study can be classified into object-oriented DB application to bridge construction and object-oriented DB utilization of civil material information. First, application of object-oriented DB to bridge construction 1) constructs the work unit of classified work table as an object(Each object constructs material information on the statement of quantity calculation as data), 2) constructs object-oriented DB for superstructure and substructure of PSC Beam bridge, 3) leads to the research for ways to utilize materials by developing 3D bridge prototype with REVIT structure. Secondly, ways to utilize object-oriented DB for civil material information identified the possibility for utilizing it in making 2D drawings for design work, preparing materials list, analyzing structure for working businesses, selecting and purchasing materials, managing process and maintaining. It is suggested that the results of this study should be applied to all bridge constructions through test-bed and additional studies so as to secure the credibility of the results of this study.

  • PDF

Free and Ambient Vibration of Steel-Deck Truss Bridge (강합성 데크 트러스 보도교의 자유진동해석 및 상시진동실험에 관한 연구)

  • Jung, Sung Yeop;Oh, Soon Taek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.60-68
    • /
    • 2012
  • This study describes an analytical and experimental investigation of the pedestrian steel-deck truss bridge in the City of Rochester, New York, U.S.A. This investigation was undertaken to provide assurance that this important bridge continues to be functional for this use. An ambient vibration experiment on full-scale structures is a way of assessing the reliability of the various assumptions employed in the mathematical models used in analysis. It is also the most reliable way of determining the structural parameters of major importance in structural dynamics, such as the mode shapes and the associated natural frequencies. Pedestrian-induced vibrations have been measured on the bridge to determine the displacement and the vertical and transverse dynamic characteristics of the steel deck truss. In the analytical modeling, three-dimensional finite element analysis was developed and validated against the ambient tests.

Modified HAZUS Method for Seismic Fragility Assessment of Domestic PSC-I Girder Bridges (PSC-I 거더교의 지진취약도 평가를 위한 HAZUS 방법의 국내 적용성 연구)

  • Seo, Hyeong-Yeol;Yi, Jin-Hak;Kim, Doo-Kie;Song, Jong-Keol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.161-170
    • /
    • 2010
  • To reduce the amount of seismic damage, several design codes are being improved considering the earthquake resistant systems, and many researches are being conducted to develop the earthquake damage evaluation techniques. This study develops the Korean seismic fragility function using the modified HAZUS method applicable to PSC-I girder bridges in Korea. The major coefficients are modified considering the difference between the seismic design levels of America and Korea. Seismic fragility function of the PSC-I girder bridge (one of the standard bridge types in Korea) is evaluated using two methods: numerical analysis and modified HAZUS method. The main coefficients are obtained about 70% of the proposed values in HAZUS. It is found that the seismic fragility function obtained using the modified HAZUS method closes to the fragility function obtained by conventional numerical analysis method.

A Study on the Probabilistic Risk Analysis for Safety Management in Construction Projects

  • Lee, Dong-Yeol;Kim, Dong-Eun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.139-147
    • /
    • 2021
  • In this study, we proposed the possibility of reliability analysis of risk index by using Monte Carlo simulation as basic data of safety accident occurrence data and expert opinion by construction industry type. Through this, it is expected that risk index for safety accidents according to detailed types of works will be presented stochastically and it will be possible to predict the risk factors and the expected range of damage based on the reliability analysis in the construction safety management plan. It will also reduce many of the planning risks that are common to decision makers in the field of construction management. In identifying risks, road bridge construction was classified into earthworks, drainage works, and bridge construction, and possible safety accidents were classified based on expert data. The risk index was calculated for each detailed construction of road and bridge construction, drainage construction, and bridge construction.

Earthquake Response Analysis of a RC Bridge Including the Effect of Repair/retrofitting (보수/보강 효과를 고려한 철근콘크리트교량의 내진응답해석)

  • Lee, Do Hyung;Cho, Kyu Sang;Jeon, Jeong Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.611-622
    • /
    • 2008
  • Nonlinear analyses have been carried out for both bridge piers and a bridge structure being repaired using a repair element in order to assess the post-repair seismic response of such structures. For this purpose, a simplified CFRP stress-strain model has been proposed. The analytical predictions incorporating the current developments correlate reasonably well with experimental results in terms of strength and stiffness. In addition, nonlinear dynamaic analyses have also been conducted for a bridge structure in terms of the created multiple earthquake sets to evaluate the effect of pier repair on the response of a whole bridge structure. In these analyses, potential plastic hinge zones of piers are virtually repaired by CFRP and steel jacketing. Comparative results prove the virtual necessity of performing nonlinear post-repair analyses under multiple earthquakes, particularly when the post-repair response features are required. In all, the present approaches are expected to provide salient information regarding a healthy seismic repair intervention of a damaged strcuture.

Effect of Cable Tension Changes on Track Irregularity of Railway Ballasted Track on Railway Steel Composite Bridge (케이블 장력변화가 강철도 복합교량 상 자갈궤도의 궤도틀림에 미치는 영향)

  • Jung-Youl Choi;Soo-Jae Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.633-638
    • /
    • 2023
  • In this study, the effect of the change in cable tension on the track irregularity of railway ballasted track on a railway steel composite bridge was analyzed. As a result of comparing design and analysis results for cable tension, a difference of less than 3% was found, and analysis modeling was analyzed to reflect the design conditions well. In addition, the adequacy of the analysis modeling was demonstrated by comparing the field measurement results with the analysed cable tension. By considering the change in cable tension as a variable, the track irregularity of the railway steel composite bridge was analyzed. As a result of the analysis, it was analyzed that the total and one-sided cable tension change had a direct effect on the vertical irregularity among the track irregularity items. In addition, it was found that the change in track irregularity occurred in the section close to the cable position. It was analyzed that the change in cable tension had a more direct effect on track irregularity that had a direct correlation with the vertical direction rather than the lateral direction.

Measurement and Analysis of Wind Response of InCheon Bridge (인천대교의 풍응답 계측 및 분석)

  • Kim, Saang-Bum;Im, Duk-Ki;Park, Hyun-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.340-343
    • /
    • 2011
  • 장대 케이블 교량의 풍응답을 계측할 수 있는 무선센서네트워크 기반의 풍응답 계측시스템을 개발하고, 이를 사용하여 인천대교의 시공단계별로 고유진동수, Mode Shape과 같은 Modal Parameters의 변화를 추정하고 보강형에서의 풍압분포와 보강형, 주탑, 케이블의 가속도를 계측하여 내풍 성능을 분석하였다. 개발된 계측 시스템은 인천대교 사장교의 전체 거동을 계측할 수 있도록, 1.5km 범위에 넓게 분포된 최대 55 Nodes에서 최대 1kHz의 동기화된 계측을 수행할 수 있으며, 각 Node별로 3축가속도나 풍압을 측정할 수 있다. 전체 Node에서 가속도를 계측하는 경우에는 최대 165 Channel을 1kHz로 측정할 수 있다. Modal 해석의 경우에, 고가교, 접속교, 사장교 주탑, 보강형, 케이블의 시공 단계별 동특성의 변화를 추정하였으며, 고가교에서는 모드해석을 통해 역추정한 구조계수를 정적재하실험 및 실험실에서의 Mold 시험결과와 비교하였으며 사장교 케이블에서는 케이블 댐퍼의 성능을 분석하였다. 또한 인천대교 보강형에서의 풍압분포를 계측하였으며, 풍압의 공간상관관계를 분석하였고, 풍하중 및 풍진동 특성을 분석하여 가속도 계측 결과와 비교하였다. 계측 및 분석 결과를 바탕으로 장대교량의 내풍성능을 확보하고 향상시키는데 활용할 수 있을 것으로 기대한다.

  • PDF

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.