• Title/Summary/Keyword: 전진속도

Search Result 142, Processing Time 0.017 seconds

Bio-monitoring System using Shell Valve Movements of Pacific Oyster (Crassostrea gigas) (Detecting Abnormal Shell Valve Movements Under Hypoxia Water using Hall Element Sensor) (참굴(Crassostrea gigas)의 패각운동을 이용한 생물모니터링 시스템 연구 (빈산소에서 홀 소자를 이용한 패각운동 측정))

  • Jeon, Jin-Young;Moon, Su-Yeon;Oh, Seok Jin
    • Journal of Marine Life Science
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • We investigated the possibility of a bio-monitoring system for detecting hypoxic water in coastal area using shell valve movements of Pacific oyster (Crassostrea gigas), which showed most aquaculture production in Korea, with Hall element sensor. In filtrating water to confirm shell valve movement (SVM) under normal condition, it showed spikes which mean a relatively fast closing condition after opened condition of average 5~12 mm, and then the SVM showed back to opening condition slower than closing speed SVM numbers during light period were similar to that of dark period (p<0.05). When dissolved oxygen (DO) concentration was reduced from 7 mg l-1 to 3 mg l-1, SVM numbers were increasing with decreasing of DO, and showed abnormality SVMs as compare with normal condition. Moreover, in the condition of 2 mg l-1, Distance between light and left shell showed gradually decreased, and then we could not detected SVMs due to closed condition. Thus, if we quickly detect abnormal environmental variations as hypoxia water using bio-monitoring of SVM, it may be contribute to increased productivity by dramatically reducing damages in aquaculture.

Interactive analysis tools for the wide-angle seismic data for crustal structure study (Technical Report) (지각 구조 연구에서 광각 탄성파 자료를 위한 대화식 분석 방법들)

  • Fujie, Gou;Kasahara, Junzo;Murase, Kei;Mochizuki, Kimihiro;Kaneda, Yoshiyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.26-33
    • /
    • 2008
  • The analysis of wide-angle seismic reflection and refraction data plays an important role in lithospheric-scale crustal structure study. However, it is extremely difficult to develop an appropriate velocity structure model directly from the observed data, and we have to improve the structure model step by step, because the crustal structure analysis is an intrinsically non-linear problem. There are several subjective processes in wide-angle crustal structure modelling, such as phase identification and trial-and-error forward modelling. Because these subjective processes in wide-angle data analysis reduce the uniqueness and credibility of the resultant models, it is important to reduce subjectivity in the analysis procedure. From this point of view, we describe two software tools, PASTEUP and MODELING, to be used for developing crustal structure models. PASTEUP is an interactive application that facilitates the plotting of record sections, analysis of wide-angle seismic data, and picking of phases. PASTEUP is equipped with various filters and analysis functions to enhance signal-to-noise ratio and to help phase identification. MODELING is an interactive application for editing velocity models, and ray-tracing. Synthetic traveltimes computed by the MODELING application can be directly compared with the observed waveforms in the PASTEUP application. This reduces subjectivity in crustal structure modelling because traveltime picking, which is one of the most subjective process in the crustal structure analysis, is not required. MODELING can convert an editable layered structure model into two-way traveltimes which can be compared with time-sections of Multi Channel Seismic (MCS) reflection data. Direct comparison between the structure model of wide-angle data with the reflection data will give the model more credibility. In addition, both PASTEUP and MODELING are efficient tools for handling a large dataset. These software tools help us develop more plausible lithospheric-scale structure models using wide-angle seismic data.