• Title/Summary/Keyword: 전전두피질

Search Result 16, Processing Time 0.022 seconds

BOLD Responses to Acupuncture on Each Side of ST36 (족삼리 좌우측 자침에 대한 BOLD 반응)

  • Yeo, Sujung;Bae, Seong-In;Choe, Ilwhan;Jahng, Geon-Ho;Lim, Sabina
    • Korean Journal of Acupuncture
    • /
    • v.31 no.1
    • /
    • pp.20-32
    • /
    • 2014
  • Objectives : There has been some controversy about the modulatory effects on brain function during acupuncture on each side of the same acupoint. This study was designed to investigate and compare the blood oxygen level-dependent(BOLD) responses of acupuncture on each side of ST36. Methods : Fourteen healthy subjects were recruited for imaging and received acupuncture or placebo stimulations either on the left or on the right acupoint of ST36 in each scan. For the voxel-wise statistical analysis, one sample T-test and the within-subject analysis of variance(ANOVA) test were performed using SPM8 software. Results : This study showed that acupuncture on each side of ST36 showed different BOLD signal patterns. Higher BOLD responses after acupuncture stimulations at the left ST36 compared to the right were observed mainly in the parahippocampal gyrus(BA 28), dorsolateral prefrontal cortex(DLPFC, BA 44), thalamus, culmen and claustrum. We investigated the different neural responses between rest and activation periods of placebo and acupuncture stimulations on each side of ST36. Acupuncture at the right ST36 elicited activation mainly in the insula, supplementary motor area(SMA) and anterior cingulate cortex(ACC), while acupuncture at the left ST36 elicited activation mainly in the insula, primary somatosensory cortex(SI, BA 2) and DLPFC(BA 44). Conclusions : To our knowledge, this is the first reported functional MRI study directly comparing when needling at the right and at the left side of ST36. This study's preliminary results proved to be evidence of acupuncture's different effects when performed on opposite sides of an acupoint.

Brain Regions Associated With Anhedonia in Healthy Adults : a PET Correlation Study (정상 성인에서 양전자방출단층촬영을 통해 관찰한 무쾌감증 관련 뇌 영역)

  • Jung, Young-Chul;Seok, Jeong-Ho;Chun, Ji-Won;Park, Hae-Jeong;Lee, Jong-Doo;Kim, Jae-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.438-444
    • /
    • 2005
  • Purpose: Anhedonia has been proposed to be the result of a basic neurophysiologic dysfunction and a vulnerability marker that precede and contribute to the liability of developing schizophrenia. We hypothesized that anhedonia, as a construct reflecting the decreased capacity to experience pleasure, should be associated with decreased positive hedonic affect trait. This study examined the relationship between anhedonia and positive hedonic affect trait and searched for the brain legions which correlate with anhedonia in normal subjects. Materials and Methods: Using $^{18}F$-FDG PET scan, we investigated the brain activity of twenty one subjects during resting state. Questionnaires were administrated after the scan in order to assess the self-rated individual differences in physical/social anhedonia and positive/negative affect traits. Results: Negative correlation between physical anhedonia score and positive affect trait score was significant (Pearson coefficient =-0.440, p<0.05). The subjects physical and social anhedonia scores showed positive correlation with metabolic rates in the cerebellum and negative correlation with metabolic rates in the inferior temporal gyrus and middie frontal gyrus. In addition, the positive affect trait score positively correlated with various areas, most prominent with the inferior temporal gyrus. Conclusion: These results suggest that neural substrates, such as the inferior temporal gyrus and prefrontal-cerebellar circuit, which dysfunction has been proposed to be involved with the cognitive deficits of schizophrenia, may also play a significant role in the liability of affective deficits like anhedonia.

Association of Schizophrenia with Pathological Aging : A Behavioral and Histological Study Using Animal Model (정신분열병과 병적 노화의 연관성 : 동물모형을 이용한 행동 및 조직학적 연구)

  • Cheon, Jin-Sook;Oh, Byoung-Hoon;Chang, Hwan-Il
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.83-94
    • /
    • 1998
  • Objectives : Phencyclidine(PCP) or PCP-like substances such as ketamine have been known to rekindle the cognitive dysfunction in schizophrenia. The aims of this study were to identify whether PCP-like substances can produce cognitive deficit in schizophrenia, to discuss relation with aging process, and finally to speculate underlying neurochemical mecha-nisms by various drug responses. Methods : In experiment I, radial maze tests were done in 24 Sprague-Dawley rats for 3 days to get baseline data. Being divided into 4 groups(6 rats respectively) of normal aged, normal adult controls, atropine-treated and ketamine-treated, the radial maze tests were repeated on every week for 6 weeks, and then the rats were sacrificed by intracardiac perfusion with phosphate-buffered 10% formaldehyde solution for histology. The brain specimen was stained with hematoxylin-eosin to count cells in the prefrontal cortex and hippocampus. In experiment II, radial maze tests were done for 48 rats before any drug treatment and only after ketamine administration. Thereafter, haloperidol, bromocriptine, clonidine, nimodipine, tacrine, valproic acid, naloxone and fluoxetine were intramuscularly injected on every other day in addition to ketamine. Radial maze tests were repeated on every week for 6 weeks, and then rats were prepared by the same procedure for histology. Results : 1) Reaction times of radial maze tests of atropine-treated rats were significantly prolonged than those of normal aged(p<0.05) or normal adult controls(p<0.05). Cell numbers of prefrontal cortex & hippocampus in ketamine-treated rats were significantly reduced than those in normal aged (p<0.05) or normal adult controls(p<0.005). 2) Reduced cell numbers by ketamine became significantly raised by tacrine administration in prefrontal cortex & hippocampus(p<0.05), while there were no significant changes on radial maze tests. Cell numbers also tended to be raised by nimodipine, fluoxetine and haloperidol administration. Conclusions : In conclusion, the visuospatial memory disorders in ketamine-induced psychotic rats might be partly asso-ciated with aging process. Furthermore, the responses to the various drugs suggested cholinergic system might have an important role in the neurochemical mechanism of the cognitive dysfunction in ketamine-induced psychosis. Otherwise, calcium metabolism as well as serotonergic and dopaminergic systems seemed to be possibly related.

  • PDF

The Preliminary Study on Driver's Brain Activation during Take Over Request of Conditional Autonomous Vehicle (조건부 자율주행에서 제어권 전환 시 운전자의 뇌 활성도에 관한 예비연구)

  • Hong, Daye;Kim, Somin;Kim, Kwanguk
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.101-111
    • /
    • 2022
  • Conditional autonomous vehicles should hand over control to the driver according on driving situations. However, if the driver is immersed in a non-driving task, the driver may not be able to make suitable decisions. Previous studies have confirmed that the cues enhance take-over performance with a directional information on driving. However, studies on the effect of take-over cues on the driver's brain activities are rigorously investigated yet. Therefore, this study we evaluates the driver's brain activity according to the take-over cue. A total of 25 participants evaluated the take-over performance using a driving simulator. Brain activity was evaluated by functional near-infrared spectroscopy, which measures brain activity through changes in oxidized hemoglobin concentration in the blood. It evaluates the activation of the prefrontal cortex (PFC) in the brain region. As a result, it was confirmed that the driver's PFC was activated in the presence of the cue so that the driver could stably control the vehicle. Since this study results confirmed that the effect of the cue on the driver's brain activity, and it is expected to contribute to the study of take-over performance on biomakers in conditional autonomous driving in future.

Asymmetric effect of aging on cognitive control processes: An ERP study (인지적 통제 과정에 미치는 노화의 비대칭적 영향: ERP 연구)

  • Jin, Youngsun;Kim, Hyunok
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.4
    • /
    • pp.245-265
    • /
    • 2017
  • Recently, studies on cognitive control revealed that the optimal level of control is determined on the basis of reward and cost. The value of reward can be subjective and therefore, the optimal control strength can vary accordingly. The inconsistent effect of aging on cognitive control can be the result of flexible adjustment of control signal strength made by the older subjects. In other words, the elderly people maintains the ability to set the optimal level of control, which is known as the function of the dorsal anterior cingulate cortex. On the other hand, the age-related decline in cognitive control is obvious in rule maintenance and inhibition, which has to do with the function of lateral prefrontal cortex. In this study, we had young and old adults perform go-no go task and compared the behavioral and neural results for different reward conditions. Both age groups showed the best performance and the largest ERN amplitude when the reward was most appealing to them. And there was no age effect in ERN amplitude even though older adults' d' and accuracy was inferior to younger participants. These findings suggest that the effect aging on different cognitive control processes can be asymmetric.

Role of Anxiety in Concealed Information Test : an fMRI study (숨긴정보검사에서 불안의 역할 : fMRI 연구)

  • Eum, Yeong-Ji;Eom, Jin-Sup;Park, Kwang-Bai;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.14 no.2
    • /
    • pp.227-234
    • /
    • 2011
  • The purpose of present study was to examine brain functions associated with intention to conceal information. Kubo & Nittono(2009) and Verschuere et al.(2009) studied the intention to conceal information using P300 amplitude. On the basis of these two studies, present study attempted to identify brain area while participants were performing concealed information test. 19 healthy college students participated in fMRI-based concealed information test. Participants' name were used as concealed information. The test was performed in two conditions. In the intention condition, participants were instructed to try leaving their names undetected by suppressing their brain response to it. In the no intention condition, participants performed the test without intention to conceal. The fMRI results showed that the right anterior cingulated cortex (Rt. ACC), and left orbito-frontal cortex (Lt. OFC) activations were greater in the deceptive condition than the truth condition. These finding confirmed that ACC is area a deception-specific process as shown in the previous fMRI study. The OFC activation was also observed in the deceptive condition. The OFC is an area known as associated with emotional response such as anxiety, fear, and guilty. The anxiety induced while participants were intended to conceal information might be related to the OFC activation.

  • PDF