• Title/Summary/Keyword: 전자 내시경

Search Result 27, Processing Time 0.031 seconds

Evaluation of Clinical Effectiveness of 3D Digital Endoscopic Image (3차원 디지탈 내시경 영상의 임상적 효용성 평가)

  • Song, Chul-Gyu;Kim, Kyeong-Seop;Kim, Nam-Gyun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.5 no.1
    • /
    • pp.26-31
    • /
    • 2002
  • This paper represents the design of 3D endoscopic video system in order to improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. Minimally invasive techniques have set new standards in all surgical may experience less post-operative discomfort, shorter hospitalization, and quicker recuperation. Finally, the aim of the present study was to determine the influence of 2D and 3D video imaging on defined tasks on a laparoscopic trainer.

  • PDF

Optimizing Method for Wireless Charging with Frequency Control (주파수 제어에 의한 무선 충전 최적화 기법)

  • Ahn, Tae-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.275-280
    • /
    • 2013
  • This paper presents an optimizing method for wireless charging system, specifically focused on the capsule endoscope applications. In order to increase the wireless power transfer efficiency of electro-magnetic resonance coupled coils, this paper investigates the impact factors of the power transfer efficiency in small battery capacity system and proposes a efficiency optimizing method based on frequency control. Simulation results show that the proposed efficiency optimal control method can effectively stabilize the wireless power transfer efficiency so as to successfully solve the main issue of transfer efficiency variation with distance and as well as parasitic element.

Technical Characteristics and Trends of Capsule Endoscope (캡슐 내시경의 기술적 특징과 동향)

  • Kim, Ki-Yun;Won, Kyung-Hoon;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4C
    • /
    • pp.329-337
    • /
    • 2012
  • Capsule Endoscope(CE) is a capsule-shaped electronic device which can examine the lesions in digestive tract of human body. Recently the medical procedure using capsule endoscope is receiving great attention to both doctors and patients, since the conventional push-typed endoscope using cables brings great pain and fear to the patients. The technique was firstly available in 2000 and is based on a convergence techniques among BT(Bio Technology), IT(Information Technology), and NT(Nano Technology). The device consists of an optical parts including LEDs(Light Emitting Diodes), an image sensor, a communication module and a power module. Capsule endoscope is the embodiment of the state-of-the art technology and requires key technologies in the various engineering fields. Therefore, in this paper, we introduce the composition of the capsule endoscope system, and compare the communication method between RF(Radio Frequency) communication and HBC(Human Body Communication), which are typically used for data transmission in the capsule endoscope. Furthermore, we analyze the specification of commercialized capsule endoscopes and present the future developments and technical challenges.

Design of UWB/WiFi Module based Wireless Transmission for Endoscopic Camera (UWB/WiFi 모듈 기반의 내시경 카메라용 무선전송 설계)

  • Shim, Dongha;Lee, Jaegon;Yi, Jaeson;Cha, Jaesang;Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Ultra-wide-angle wireless endoscopes are demonstrated in this paper. The endoscope is composed of an ultra-wide-angle camera module and wireless transmission module. A lens unit with the ultra-wide FOV of 162 degrees is designed and manufactured. The lens, image sensor, and camera processor unit are packaged together in a $3{\times}3{\times}9-cm3$ case. The wireless transmission modules are implemented based on UWB- and WiFi-based platform, respectively. The UWB-based module can transmit HD video to a computer in resolution of $2048{\times}1536$ (QXGA) and the frame rate of 15 fps in MJPEG compression mode. The maximum data transfer rate reaches 41.2 Mbps. The FOV and the resolution of the endoscope is comparable to a medical-grade endoscope. The FOV and resolution is ~3X and 16X higher than that of a commercial high-performance WiFi endoscope, respectively. The WiFi-based module streams out video to a smart device with th maximum date transfer rate of 1.5 Mbps at the resolution of $640{\times}480$ (VGA) and the frame rate of 30 fps in MJPEG compression mode. The implemented components show the feasibility of cheap medical-grade wireless electronic endoscopes, which can be effectively used in u-healthcare, emergency treatment, home-healthcare, remote diagnosis, etc.

Composite Endoscope Image Construction based on Massive Inner Intestine Photos (다량의 내장 사진에 의한 화상 구성)

  • Kim, Eun-Joung;Yoo, Kwan-Hee;Yoo, Young-Gap
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.108-114
    • /
    • 2007
  • This paper presented an image reconstruction method based on the original capsule endoscopy photos yielding a 2-D image for faster diagnosis proposes. The proposed method constructed a 3-D intestine model using the massive images obtained from the capsule endoscope. It merged all images and completed a 3-D model of an intestine. This 3-D model was reformed as a 2-D plane image showing the inner side of the entire intestine. The proposed image composition was evaluated by the 3-D simulator, OpenGL. This approach was demonstrated successfully. A physician can find the location of a disease at a glance because the composite image provided an easy-to-understand view to show the patient's intestine and thereby shorten diagnosis time.

The Modeling and Adaptive fuzzy control of Electrostrictive Polymer for endoscopic microcapsule (체내이동형 마이크로 캡술형 내시경 로봇을 위한 Electrostrictive Polymer의 모델링 및 Adaptive fuzzy 알고리듬 개발)

  • Hwang, Kyo-Il;Kim, Hun-Mo;Choi, Hyouk-Yeol;Nam, Jae-Do;Jeon, Jae-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.716-722
    • /
    • 2001
  • In this paper, the modeling and control of electrostrictive polymer is introduced for endoscopic microcapsule. The endoscopic microcapsule works in the body, so the material of robot must be no harmful to the body. The electrostrictive polymer satisfies this condition. The modeling and control of endoscope microcapsule must be processed. So the modeling and control of electrostrictive was processed preferentially. The electrostrictive polymer is so flexible that we considered the electrostrictive polymer as flexible membrane. The dynamic equation of flexible membrane is time variant in electrostrictive polymer. It is the reason that the elastic modulus of electrostrictive polymer is very small and changes as deformation of electrostrictive polymer. The control algorithm must overcome these characteristics. So the algorithm of adaptive fuzzy control was used to control. In this paper, we introduced the dynamic modeling and control of electrostrictive polymer. And its deformation is introduced.

  • PDF

Using a computer color image automatic detection algorithm for gastric cancer (컴퓨터 컬러 영상을 이용한 위암 자동검출 알고리즘)

  • Han, Hyun-Ji;Kim, Young-Mok;Lee, Ki-Young;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.250-257
    • /
    • 2011
  • This experiment present the automatic detection algorithm of gastric cancer that take second place among all cancers. If an inflammation and a cancer are not examined carefully, early ones have difficulty in being diagnosed as illnesses than advanced ones. For diagnosis of gastric cancer, and progressing cancer in this study, present 4 algorithm. research team extracted an abnormal part in stomach through the endoscope image. At first, decide to use shading technique or not in each endoscope image for study. it make easy distinguish to whether tumor is existing or not by putting shading technique in or eliminate it by the color. Second. By passing image subjoin shading technique to erosion filter, eliminate noise and make give attention to diagnose. Third. Analyzing out a line and fillet graph from image adding surface shade and detect RED value according to degree of symptoms. Fourth. By suggesting this algorithm, that making each patient's endscope image into subdivision graph including RED graph value, afterward revers the color, revealing the position of tumor, this study desire to help to diagnosing gastric, other cancer and inflammation.

Wireless capsule endoscopy Locomotion

  • Wang, Zhao;Lim, Eng Gee;Leach, Mark;Xia, Tianqi;Lee, Sanghyuk
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.1
    • /
    • pp.55-62
    • /
    • 2014
  • Wireless capsule endoscopy (WCE) was one of the most influential bio-medical electronic technologies to be developed at the beginning of the century. In comparison to traditional endoscopic diagnosis, this application is characterized as non-invasive and low-risk, thereby providing surgeons with a new alternative for inspecting the entire gastrointestinal (GI) track in a much more user friendly way. Apart from regular hardware upgrades, the frontier of WCE research basically lies in the miniaturization of the capsule and in active locomotion. In order to overcome the intrinsic drawback of current commercialized WCE products, which is that locomotion is generally a function of natural peristalsis, active locomotion is proposed as a series of strategies used to effectively navigate the device into different organs and conduct therapeutic functions within targeted human tissues. Reviews of several novel designs with respect to this aspect of research will be discussed in this article.

  • PDF

A Study on a Ultra-wide-angle Wireless Digital Electronic Endoscope Modules (초광각 무선 디지털 전자 내시경 모듈에 관한 연구)

  • Shim, Dongha;Kim, Hyung-O;Lee, Bong-Ju;Hong, Seung-Cheol;Lee, Jason;Cha, Jaesang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.570-574
    • /
    • 2014
  • This paper proposes a wireless digital endoscope with a ultra-wide-angle view. Two key components are implemented to demonstrate the feasibility of the proposed endoscope. First, a ultra-wide-angle lens module with the field of view of 144 degree and F-number of 2.2 is designed and manufactured. Second, a wireless module for a high-speed video transfer is implemented using a USB device server and wireless LAN router. The wireless module can directly transfer a streaming video to a computer with the resolution of 1920x1080, frame rate of 30 fps, and data rate of 53.3 Mbps without an internet connection. Since the wireless module supports two USB devices, two spots can be simultaneously observed using the proposed endoscope.

Design and Performance Evaluation of Impact Type Actuator Using Magnetic Force (자기력을 이용한 충격형 액추에이터의 설계 및 성능 평가)

  • Min, Hyun-Jin;Lim, Hyung-Jun;Kim, Byung-Kyu;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1438-1445
    • /
    • 2002
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes have not been replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope that allows safe maneuverability in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfers momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjustment of impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulations show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.