• Title/Summary/Keyword: 전자식 비행제어 항공기

Search Result 9, Processing Time 0.02 seconds

In-Flight Simulation for the Evaluation of Flight Control Law (비행제어계 평가를 위한 항공기 공중모의 비행시험)

  • Go,Jun-Su;Lee,Ho-Geun;Lee,Jin-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.79-88
    • /
    • 2003
  • The paper presented here covers the work associated with the flight control law design, ground based and in flight simulation and handling qualities assessment of the Fly-by-Wire type Aircraft (FBWA). The FBWA configurations are of the same generic form of the Korean advanced trainer. The normal acceleration (Nz) and pitch rate (q) feedback control system is employed for longitudinal axis and roll rate (p) and lateral acceleration (Ny) feedback flight control law is developed in lateral/ directional axis. The flight tests for the FBW A dynamics evaluation were executed for the target aircraft (FBWA) on the IFS (In-Flight-Simulator) aircraft . The test results showed that Level 1 handling qualities for the most unstable flight regime and Level 1/2 for the landing approach flight regime were achieved. And the designed FBWA flight control law has revealed acceptable CHR (Cooper-Harper handling qualities Ratings).

Aircraft Digital Fly-By-Wire System Technology Development Trend (항공기 디지털 전자식 비행제어 시스템 기술 개발 동향)

  • Seong-Byeong Chae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.509-520
    • /
    • 2023
  • In this paper, the structure and the characteristics of the Fly-By-Wire system applied to the civil aircraft was described. The development trend of the redundant method of the flight control system, data communication system, control surface actuation system and the control laws implemented by the Fly-By-Wire system of the civil aircraft are discussed. The Fly-By-Wire system was first applied to the fighter and its inherent advantages lead to the advent of the Fly-By-Wire civil aircraft. Recently even the small jet aircraft shows the trend of adopting the Fly-By-Wire system. In the future, most of the aircraft are expected to be the Fly-By-Wire type.

Civil Aircraft Digital Fly-By-Wire System Technology Development Trend (민간항공기 디지털 Fly-By-Wire 시스템 기술 개발 동향)

  • Kim, Eung-Tai;Chang, Jae-Won;Choi, Hyoung-Sik;Lee, Sug-Chon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.85-94
    • /
    • 2009
  • The Fly-By-Wire system was first applied to the fighter and its inherent advantages lead to the advent of the Fly-By-Wire civil aircraft. Recently even the small jet aircraft shows the trend of adopting the Fly-By-Wire system. In the future, most of the aircraft are expected to be the Fly-By-Wire type. In this paper, the structure and the characteristics of the Fly-By-Wire system applied to the civil aircraft was described. The development trend of the redundant method of the flight control system, data communication system, control surface actuation system and the control laws implemented by the Fly-By-Wire system of the civil aircraft are discussed.

  • PDF

Development of Transient Simulation Program for Smart UAV Propulsion System (스마트 무인기 추진기관의 천이 모사 프로그램 개발)

  • Lee, Chang-Ho;Ki, Ja-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • The Smart UAV must have the control characteristics of propulsion system necessary for both rotary aircraft and fixed wing aircraft though it equips turbo-shaft engine. To develop an electronic engine controller in the future, it is necessary to accumulate the experience of engine operation and data of tilt rotor aircraft. For this purpose, the computer programs which predict engine performance in the steady state and transient state can be utilized for the supplementation of flight test data. In this work, we developed a dynamic analysis program using engine performance data gathered during the flight tests. In addition the accuracy of the program was verified through comparison with flight test data and the results of steady-state performance analysis program.

Operation limits analysis of PW206C turboshaft engine in manual mode (PW206C 터보축 엔진의 수동운용범위 분석)

  • Lee, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.42-47
    • /
    • 2008
  • The power control system of Smart UAV is similar to the propeller pitch governing concept of turboprop aircraft. The pilot adjusts the engine power directly and the pitch governor controls the propeller pitch to maintain the propeller rotational speed. The electronic engine controller(EEC) of PW206C engine developed for helicopter is not fit for the power control concept of Smart UAV, and therefore the manual back-up system of PW206C engine is used for the engine power control of Smart UAV. Engine performance estimation program is used to predict the control range of power lever angle(PLA) according to the variation of engine output shaft speed, flight altitude and flight speed. These data provide a guide for the PLA control in manual mode operation.

Operation limits analysis of PW206C turboshaft engine In manual mode (PW206C 터보축 엔진의 수동운용범위 분석)

  • Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.339-342
    • /
    • 2007
  • The power control system of Smart UAV is similar to the propeller pitch governing concept of turboprop aircraft. The pilot inputs the engine power directly and the pitch governor controls the propeller pitch to maintain the propeller RPM. The manual back-up system of PW206C engine is used for the engine power control of Smart UAV. Engine performance estimation program is used to predict the control range of power lever arm(PLA) angle according to the variation of flight altitude and speed. These data provide a guide for the engine control in manual mode operation.

  • PDF

FBW System and Operational Flight Program Development for Small Aircraft (소형항공기를 위한 FBW 시스템과 비행운영 프로그램 개발)

  • Lee, Seung-Hyun;Kim, Eung Tai;Seong, Kiejeong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • To have the competitiveness in the future worldwide small aircraft market, we should be able to develop the aircraft which is highly safe, easy to fly, and having excellent flight characteristics. FBW(Fly-By Wire) system is essential for the enhancement of flight safety and control easiness. FBW system that has been applied only to the modern fighter and transport aircraft is recently applied to smaller aircraft such as regional aircraft, business aircraft and even small aircraft. The purpose of this research includes the development of flight control computer, the definition of FBW system component, the design concept of each component for redundant management, OFP(Operational Flight Program) development, FBW system integration and HILS(Hardware In-the Loop Simulation) verification environment to test this FBW system.

A Design of Helicopter Control Law Rapid Prototyping Process Using HETLAS (HETLAS를 활용한 헬리콥터 비행제어 법칙 Rapid Prototyping 프로세스 설계)

  • Yang, Chang Deok;Jung, Ho-Che;Kim, Chang-Joo;Kim, Chong-Sup;Kim, Cheol-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.731-738
    • /
    • 2015
  • The rapid prototyping process and development tool which enable the control law evaluation efficiently are needed to minimize the development cycle, cost and risk of aircraft flight control system. This paper describes a development process that integrates the designed control law into HETLAS to evaluate simulation effectively using nonlinear mathematical models. The desktop engineering simulator was developed using HETLAS for the piloted simulation evaluation of a various control modes and the procedure was developed, which quickly integrates the HETLAS into HQS(Handling Quality Simulator) and HILS(Hardware In the Loop Simulation) environments. This paper presents a rapid prototyping process using HETLAS that significantly shortens the integration process of the control law into the nonlinear math model, HETLAS, and allows the control law designs to be quickly tested in the piloted simulation and HILS environments.

A Development and Verification Process of Auto Generated Code for Fly-By-Wire Helicopter Control Law (Fly-By-Wire 헬리콥터 비행제어법칙 자동생성코드 개발 및 검증 프로세스)

  • Ahn, Seong-Jun;Kim, Chong-Sup;Cho, In-Je;Heo, Jin-Goo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.488-494
    • /
    • 2013
  • The control law design and analysis environment of the FBW helicopter system have been developed using model base design method. The model based design is generally used in a aircraft, unmanned aerial system and automobile as well as rotorcraft development. The model based design provides many advantages such as development risk and schedule reduction using simulation and autocode generation. This paper describes a development of process for verification and validation of auto generated code for FBW helicopter flight control law. And this process is applied for Fly-By-Wire Helicopter Development Project. The results of functional test for auto generated code meet several specific requirements.