• Title/Summary/Keyword: 전임상연구

Search Result 63, Processing Time 0.023 seconds

The Roles of Dietary Polyphenols in Brain Neuromodulation (뇌 신경조절에서의 식이 폴리페놀 화합물의 역할)

  • Lee, Hyeyoung;Lee, Heeseob
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1386-1395
    • /
    • 2018
  • Over recent years, it has become evident that the central nervous system bidirectionally interacts with the gastrointestinal tract along the gut-brain axis. A series of preclinical studies indicate that the gut microbiota can modulate central nervous system function through a multitude of physiological functions. Polyphenols are ubiquitous plant chemicals included in foods such as fruits, vegetables, tea, coffee and wine, and their consumption is directly responsible for beneficial health effects due to antioxidant, anti-inflammatory, antimicrobial, immunomodulatory, anticancer, vasodilating, and prebiotic-like effects. There is increasing evidence that dietary polyphenol can contribute to beneficial effects in neuronal protection acting against oxidative stress and inflammatory injury as well as in cognitive functions. In this paper, we overview the neuroprotective role of dietary polyphenols especially focusing on the neuroinflammation and neurovascular function by interaction with the gut microbiome. Polyphenol metabolites could directly act as neurotransmitters crossing the blood-brain barrier and modulating the cerebrovascular system or indirectly modulating gut microbiota. In addition, evidence suggests that dietary polyphenols are effective in preventing and managing neurological disorders, such as age-related cognitive decline and neurodegeneration, through a multitude of physiological functions. Dietary polyphenols are increasingly envisaged as a potential nutraceuticals in the prevention and treatment of neurological disorders, because they possess the ability to reduce neuroinflammation, to improve memory and cognitive function and to modulate the gut microbiota.

Antioxidant and Anti-Cholesterol Activities of Standardized Ecklonia Stolonifera Extract (표준화된 곰피추출물의 항산화 활성 및 콜레스테롤 개선 효과)

  • Han, Xionggao;Kim, Woo-Hyeok;Choi, Sun-Il;Men, Xiao;Lee, Se-jeong;Jin, Heegu;Oh, Hyun-Ji;Kang, Dahye;Kim, HyungBin;Lee, Boo-Yong;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.4
    • /
    • pp.353-362
    • /
    • 2021
  • Ecklonia stolonifera, which belongs to the family Laminariaceae, is an edible perennial brown marine alga that is widely distributed, and is rich in polyphenols, including dieckol. Here, we investigated the radical scavenging activities of E. stolonifera extract (ESE) using various in vitro models. We further evaluated the effect of ESE on the cholesterol secretion inhibition activity in HepG2 cells, as well as the hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase activity. Our results showed that the total phenol, total flavonoid, and dieckol contents of ESE were 9.64±0.04 mg GAE/g, 2.72±0.08 mg RE/g and 27.42±0.66 mg/g, respectively. The antioxidant activity of ESE increased in a dose-dependent manner. In addition, the ESE inhibited cholesterol secretion from HepG2 cells with anti-HMG-CoA reductase activity. These results suggested that ESE possesses antioxidant and anti-cholesterol activities, and can therefore be used as a preclinical bioresource for development of health functional foods.

Role of Sirtuin 1 in Depression and Associated Mechanisms (우울증에 관한 Sirtuin 1의 역할과 관련된 기전)

  • Seog, Dae-Hyun;Park, Sung Woo
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1120-1127
    • /
    • 2021
  • Depression has a negative impact on social functioning due to its high prevalence and increased suicide rate, and is a disease with a high economic burden. Depression is related to diverse brain-related phenomena, such as neuroinflammation, synaptic dysfunction, and cognitive deficit. As antidepressant drugs used in clinical trials have shown poor therapeutic effects, antidepressant drugs that show rapid efficacy urgently need to be developed. Although studies on various genes, proteins, and signaling pathways related to depression have been conducted, the pathogenesis of depression has not been clearly elucidated. Sirtuin 1 is a nicotinamide-adenine dinucleotide- (NAD+-) dependent histone deacetylase and is involved in cell differentiation, apoptosis, autophagy, and cancer metabolism. Recent genetic studies found that sirtuin 1 is a potential target gene for depression. In addition, preclinical studies reported that sirtuin 1 signaling affects depression-like behavior. In this review, we attempt to present up-to-date knowledge of depression and sirtuin 1. We describe the various roles of sirtuin 1 in the regulation of glial activation, circadian rhythm, neurogenesis, and cognitive function and the effects of its expression on depression. Further, we discuss the effect of sirtuin 1 on the impairment of neural plasticity, one of the key mechanisms of depression, and the associated mechanisms of sirtuin 1.

Bioluminescence Imaging of Chondrocytes in Rabbits by Intraarticular Injection of D-Luciferin (토끼에서 D-luciferin의 관절강 주입에 의한 연골세포의 자연발광 영상)

  • Moon, Sung-Min;Min, Jung-Joon;Oh, Suk-Jung;Kang, Han-Saem;Kim, Young-Ho;Kim, Sung-Mi;Kim, Kwang-Yoon;Bom, Hee-Seung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.54-58
    • /
    • 2007
  • Purpose: Luciferase is one of the most commonly used reporter enzymes in the field of in vivo optical imaging. D-luciferin, the substrate for firefly luciferase has very high cost that allows this kind of experiment limited to small animals such as mice and rats. In this current study, we validated local injection of D-luciferin in the articular capsule for bioluminescence imaging in rabbits. Materials and Methods: Chondrocytes were cultured and infected by replication-defective adenoviral vector encoding firefly luciferase (Fluc). Chondrocytes expressing Fluc were injected or implanted in the left knee joint. The rabbits underwent optical imaging studies after local injection of D-luciferin at 1, 5, 7, 9 days after cellular administration. We sought whether optimal imaging signals was could be by a cooled CCD camera after local injection of D-luciferin. Results: Imaging signal was not observed from the left knee joint after intraperitoneal injection of D-luciferin (15 mg/kg), whereas it was observed after intraarticular injection. Photon intensity from the left knee joint of rabbits was compared between cell injected and implanted groups after intraarticular injection of D-luciferin. During the period of imaging studies, photon intensity of the cell implanted group was 5-10 times higher than that of the cell injected group. Conclusion: We successfully imaged chondrocytes expressing Fluc after intraarticular injection of D-luciferin. This technique may be further applied to develop new drugs for knee joint disease.

Evaluation of Anastomotic Strength and in-vitro Degradability with Microvascular Anastomosis Coupler Based on Injection Molding Condition made by Biodegradable Polycaprolactone(PCL) (생체분해성 폴리카프로락톤(PCL) 미세혈관 문합커플러의 사출성형조건에 따른 문합강도 및 in-vitro 분해능 평가)

  • Ahn, Geun-Seon;Han, Gig-Bong;Oh, Seung-Hyun;Park, Jong-Woong;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.167-177
    • /
    • 2013
  • The use of mechanical anastomosis coupler instead of sutures has been increasing in microvascular anastomosis surgery. However, non-biodegradable anastomosis coupler has problems such as not only inflammatory reaction but also remaining permanently in operation wound. Therefore, we fabricated biodegradable anastomosis coupler using injection molding process to overcome the limitation of non-biodegradable anastomosis coupler. In various injection molding process conditions, the shrinkage was calculated with different cylinder temperatures and injection molding pressures and anastomotic strength was measured. As a result, changes in shrinkage hole part larger than the pin part. In addition, the shrinkage in the cylinder at higher temperatures increase. However, the higher the injection pressure, shrinkage tends to decrease, respectively. In-vitro degradation behavior of PCL anastomotic coupler evaluated for 12 weeks, water uptake was increased and molecular weight was accompanied by a reduction in mass of the biological degradation and reduction of anastomotic strength was confirmed. However, decreased levels of anastomotic strength enough to exceed the requirements of preclinical surgery, PCL microvascular anastomosis coupler suitable candidate materials that could identify.

Enhanced Transdermal Delivery of Drug Compounds Using Scalable and Deformable Ethosomes (에토좀 입자크기와 멤브레인 특성 조절을 통한 약물의 경피흡수능 향상)

  • An, Eun-Jung;Shim, Jong-Won;Choi, Jang-Won;Kim, Jin-Woong;Park, Won-Seok;Kim, Han-Kon;Park, Ki-Dong;Han, Sung-Sik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.2
    • /
    • pp.105-113
    • /
    • 2010
  • This study introduces a flexible approach to enhance skin permeation by using ethosomes with deformable lipid membranes as well as controllable sizes. To demonstrate this, a set of ethosomes encapsulating an anti-hair loss ingredient, Triaminodil$^{TM}$, as a model drug, were fabricated with varying their size, which was achieved by solely applying the different level of mechanical energy, while maintaining their chemical composition. After characterization of the ethosomes with dynamic light scattering, transmission electron microscopy, and deformability measurements, it was found that their membrane deformability depended on the particle size. Moreover, studies on in vitro skin permeation and murine anagen induction allowed us to figure out that the membrane deformability of ethosomes essentially affects delivery efficiency of Triaminodil$^{TM}$ through the skin. It was noticeable in our study that there existed an optimum particle size that can not only maximize the delivery of the drug through the skin, but also increase its actual dermatological activity. These findings offer a useful basis for understanding how ethosomes should be designed to improve delivery efficiency of encapsulated drugs therein in the aspects of changing their length scales and membrane properties.

Synthesis of (4-$[^{18}F]$Fluorophenyl)triphenylphosphonium as a Mitochondrial Voltage Sensor for PET (PET영상용 미토콘드리아 막전위 감지기 (4-$[^{18}F]$Fluorophenyl)triphenylphosphonium의 합성)

  • Kim, Dong-Yeon;Yu, Kook-Hyun;Bom, Hee-Seung;Min, Jung-Joon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.6
    • /
    • pp.561-565
    • /
    • 2007
  • Purpose: Lipophilic cations including tetraphenylphosphonium (TPP) salts penetrate the hydrophobic barriers of the plasma and mitochondrial membranes, resulting in accumulation in mitochondria in response to the negative inner transmembrane potentials. The development of radiolabeled phosphonium cations as a noninvasive imaging agent may serve as a new molecular "voltage sensor" probe to investigate the role of mitochondria in the pathophysiology and diagnosis of cancer. Materials and Methods: We have synthesized a reference compound (4-fluorophenyl)triphenylphosphonium (TPP) and a labeled compound $[^{18}F]$TPP via two step nucleophilic substitution of no-carrier-added $[^{18}F]$fluoride with the precursor, 4-iodophenyltrimethylammonium iodide, in the presence of Kryptofix-2.2.2 and $K_2CO_3$. Result: The reference compound (4-fluorophenyl)triphenylphosphonium (TPP) was synthesized in 60% yield. The radiolabeled compound $[^{18}F]$TPP was synthesized in $10\sim15%$ yield. The radiochemical purity of the $[^{18}F]$TPP was $95.57{\pm}0.51%$ (n=11). Conclusion: $[^{18}F]$TPP was successfully synthesized that might have a potential to be utilized as a novel myocardial or cancer imaging agent for PET. However, it is required to improve the radiochemical yield to apply $[^{18}F]$TPP in preclinical or clinical researches.

Mesenchymal Stem Cell-derived Exosomes: Applications in Cell-free Therapy (중간엽줄기세포유래 엑소좀: 비세포치료제로서의 활용)

  • Heo, June Seok;Kim, Jinkwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.391-398
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are an attractive resource for refractory patients because of their anti-inflammatory/immunomodulatory capability and multi-lineage differentiation potential. The transplantation of MSCs has led to positive results in preclinical and clinical application to various diseases, including autoimmune disease, cardiovascular disease, cancer, liver cirrhosis, and ischemic stroke. On the other hand, studies have shown that paracrine factors, not direct cell replacement for damaged cells or tissue, are the main contributors in MSC-based therapy. More recently, evidence has indicated that MSC-derived exosomes play crucial roles in regulating the paracrine factors that can mediate tissue regeneration via transferring nucleic acids, proteins, and lipids to the local microenvironment and cell-to-cell communication. The use of these exosomes is likely to be beneficial for the therapeutic application of MSCs because their use can avoid harmful effects, such as tumor formation involved in cell transplantation. Therefore, therapeutic applications using MSC-derived exosomes might be safe and efficient strategies for regenerative medicine and tissue engineering. This review summarizes the recent advances and provides a comprehensive understanding of the role of MSC-derived exosomes as a therapeutic agent.

Beneficial effect of collagen hydrolysate containing collagen tripeptides on ultraviolet B-induced skin photoaging (콜라겐 트리펩타이드를 함유한 콜라겐 가수분해물의 피부 광노화 예방 효과)

  • Kim, Ae-Hyang;Ha, Min Woo;Kim, Jun Il;Piao, Zhe;Shin, Yong Chul;Shin, Daekeun
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.466-472
    • /
    • 2019
  • This study was conducted to investigate anti-photoaging effects of collagen hydrolysate containing collagen tripeptides (CTP) in both HaCaT cells and SKH-1 hairless mice. CTP treatment was nontoxic to HaCaT cells and improved expression of biomarkers associated with aging of skin, such as, collagen 1A, metalloproteinase (MMP)-1, and MMP-13 after subjecting mice to ultraviolet B (UVB) irradiation. In animal studies, the depth and width of wrinkles in the skin of mice were determined upon subjecting them to UVB irradiation. However, positive effects on wrinkles on the skin of mice were seen following CTP supplementation. Collagen content and density of mouse skin were restored following CTP supplementation for 14 weeks after UVB irradiation. These results were based on the effects of CTP on protein levels of collagen 1A, MMP-1, and MMP-13. Therefore, CTP might have positive effects on the number, depth, and width of wrinkles caused by UVB irradiation in SKH-1 hairless mice.

A Study on the Faculty Evaluation Model with Considering the Characteristics of Education-Based Colleges (전문대학의 특성을 고려한 교수업적평가 모델 연구)

  • Hwang, Il-Kyu;Kim, Kyeong-Sook;Kwon, O-Young;Ahn, Tae-Won;Park, Young-Tae
    • Journal of vocational education research
    • /
    • v.30 no.4
    • /
    • pp.23-49
    • /
    • 2011
  • Faculty performance evaluation system has been settled down as an uncomfortable but unavoidable system, and it is one of the most important factors to grow the college competitiveness up. In this study, we selected and surveyed faculty evaluation models of several universities and colleges in Korea, and analyzed by comparing each evaluation areas of educational achievement, college-industry collaboration, research, and service. We also identified the properties of the current faculty evaluation models of the junior colleges, and derived several problems from these models such as an imitation of four-year university model, a disorders of job evaluation with respect to the attributes of classified jobs, a large variation of individual item weights, and an insufficient reflection of major characteristics. Based on these surveys and analysis, an improved faculty evaluation model for the junior college is proposed in this study. This model proposed four basic areas-educational achievement, college-industry collaboration, research, and service by considering the importance of the college-industry collaboration in the junior college-as well as the team evaluation area. Weights of the SCI-class paper was selected as a criterion for the arrangement of objective comparison of each evaluation items. We showed the integration method of several different evaluation model with respect to the attributes of classified jobs of each faculties, and evaluation plan of variational characteristics according to the majors of individuals in this model. Finally, we introduced an area fail and rating system to operate efficiently the proposed faculty evaluation model.