• Title/Summary/Keyword: 전이슬래브

Search Result 8, Processing Time 0.016 seconds

Two-way Shear Behavior Analysis of Transfer Slab-Column Connection with Reverse Drop Panel Through Nonlinear FE Analysis (역드랍 패널 적용 전이슬래브-기둥 접합부의 비선형 유한요소해석을 통한 2면 전단거동 분석)

  • Jeong, Seong-Hun;Kang, Su-Min;Kim, Seung-Il;Lee, Chang-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2020
  • Recently, the use of transfer slab system has increased greatly. However, several construction problems are being encountered owing to its excessive thickness. Therefore, in this study, a transfer slab system that uses a reverse drop panel, which can utilize the facility space of the pit floor by reducing the transfer slab thickness, was considered. To investigate the shear behavior of transfer slab system that uses the reverse drop panel, the two-way shear strength of transfer slab-column connection with the reverse drop panel was analyzed using nonlinear FE analysis. In addition, the two-way shear strength evaluations of transfer slab with the reverse drop panel conducted using the existing evaluation methods were verified by comparing the strengths predicted by those methods with the results of nonlinear FE analysis.

Two-way Shear Strength Evaluation of Transfer Slab-Column Connections Through Nonlinear FE Analysis (비선형유한요소해석을 통한 전이슬래브-기둥 접합부의 2면 전단강도 평가)

  • Jeong, Seong-Hun;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.315-329
    • /
    • 2018
  • Recently, RC transfer slab systems have been used widely to construct high-rise wall-type apartments for securing parking space or public space. However, it is problem that the design method and structural performance evaluation method developed for thin RC flat slab are still used in the design of the transfer slab whose thickness is very thick and therefore structural behavior is expected to be different from RC flat slab. Thus, for the rational design of the transfer slab, the ultimate shear behavior of the RC transfer slab system is required to be analyzed properly. Accordingly, in the present study, the two-way shear behavior of the transfer slab was analyzed using nonlinear FEM according to various design parameters such as thickness of the transfer slab, strength of concrete, shear span ratio, and reinforcement ratio. In addition, the two-way shear strength evaluations of RC transfer slab by the existing evaluation methods were verified by comparing those with the results of nonlinear FEM analysis.

Structural Analysis and Design of Post-Tension Transfer Slab (포스트텐션 전이슬래브의 구조해석 및 설계방법)

  • Yoon, Jang-Keun;Kang, Su-Min;Kim, Ook-Jong;Lee, Do-Bum;Choo, Moon-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.19-20
    • /
    • 2010
  • Post-tensioning is an effective way to reduce both the depth and reinforcement contents for the reinforced concrete member. In this research, we applied post-tensioning to transfer slab in shear wall type apartment building to reduce depth and reinforcement of transfer slab.

  • PDF

Evaluation on the Compression Capacity of Transfer Slab Systems according to the Variation of Column Length (기둥의 길이변화에 따른 전이슬래브 시스템의 압축성능 평가)

  • Sim, Yeon-Ju;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.695-702
    • /
    • 2016
  • This paper presents compression capacity of transfer system in pilotis subjected to axial load. Recently, transfer system is usually used in low floors of wall-typed apartments when members' sections are suddenly changed between upper walls and bottom columns. It can help transfer loads from the walls to the columns. Especially, a transfer girder system is usually used as one of transfer systems applied to a pilotis. However, the transfer girder system has low constructability and economics. Therefore, the other transfer system with transfer slab was suggested and has been studied. In this paper, to evaluate the compression capacity of transfer slab, tests were conducted on pilotis transfer slab systems subjected to axial load. First of all, two specimens were determined by FEM. The main parameter is length of the bottom columns. The lengh of the bottom columns were 40% and 50% of length of upper walls in the tranfer slab specimens. Results showed that the compression capacity of piloti transfer systems subjected to axial load was affected by length of bottom columns. The compression capacity is 52% higher than design strength for specimen with the bottom column's length of 40% of length of the upper wall and 46% for specimen with the bottom column's length of 50% of length of the upper wall.

Punching Shear Strength of the Void Transfer Plate (중공 전이 슬래브의 뚫림 전단 강도)

  • Han, Sang-Whan;Park, Jin-Ah;Kim, Jun-Sam;Im, Ju-Hyeuk;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.367-374
    • /
    • 2010
  • The transfer slab system is a structural system that transfers the loads from the upper shear wall structure to the lower columns. This is a costly system due to a very thick slab, and the relatively high cost can be mitigated by introducing voids in the slab. However, this system of flat plate containing voids is vulnerable to brittle failure caused by punching shear in vicinity of slab-column connection. Thus, the punching shear capacity of the void system is very important. However, the current code doesn't provide a clear design provision for the strength of slabs with a void section. In this study, experimental study was conducted to investigate the punching shear strength of the void slab system. The shear strength of the specimens was predicted by current code and previous researches. In result, the punching shear strength of the void system is determined as the least value calculated at critical section located a distance d/2 from the face of the column and the center of the void section using the effective area at critical section.

Finite Element Analysis of the Reinforced Concrete Boundary-Beam-Wall System Subjected to Axial Load (축하중이 작용하는 RC 경계보-벽체 시스템의 해석적 평가)

  • Son, Hong-Jun;Kim, Seung-Il;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • In Korea, one of the most used structural systems for residential apartment buildings is the combination of the reinforced concrete (RC) wall and rahmen structures in the upper and lower floors, respectively. To alleviate the significant difference between the stiffnesses of these two structural systems, large transfer girders are generally required in the transition zone of the structure, which then results in the use of large amounts of construction materials and low economic feasibility. This paper proposes a new RC boundary-beam-wall system that can minimize the disadvantages of the RC transfer girder system. The structural performance of the proposed system subjected to axial loading was evaluated via rigorous three-dimensional nonlinear finite element analysis. Four parameters, namely the ratio of lower wall to upper wall lengths, distance between stirrups, main bar slope ratio, and slab length, were considered in the finite element analysis, and their effects on the maximum axial load were analyzed and discussed.

Stress Distribution Characteristics of Surrounding Reinforcing Bars due to Reinforcing Bar Cutting in Penetration (관통부의 철근 절단으로 인한 주변 철근의 응력분포 특성)

  • Chung, Chul-Hun;Moon, Il Hwan;Lee, Jungwhee;Song, Jae Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.775-786
    • /
    • 2022
  • In the plant structures including nuclear power plants, penetrations are frequently installed in walls and slabs to reinforce facilities during operation, and reinforcing bars are sometimes cut off during concrete coring. Since these penetrations are not considered at the design or construction stage, cutting of reinforcing bar during opening installation is actually damage to the structure, structural integrity evaluation considering the stress transition range or effective width around the new penetration is necessary. In this study, various nonlinear analyses and static loading experiments are performed to evaluate the effect of reinforcing bar cutting that occurs when a penetration is newly installed in the shear wall of wall-type building of operating nuclear power plant. In addition, the decrease in wall stiffness due to the installed new penetration and cutting of reinforcing bars is evaluated and the stress and strain distributions of rebars around penetration are also measured.