• Title/Summary/Keyword: 전위성

Search Result 1,252, Processing Time 0.021 seconds

Effects of insulin and IGF on growth and functional differentiation in primary cultured rabbit kidney proximal tubule cells - Effects of IGF-I on Na+ uptake - (초대배양된 토끼 신장 근위세뇨관세포의 성장과 기능분화에 대한 insulin과 IGF의 효과 - Na+ uptake에 대한 IGF-I의 효과 -)

  • Han, Ho-jae;Park, Kwon-moo;Lee, Jang-hern;Yang, IL-suk
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.783-794
    • /
    • 1996
  • It has been suggested that ion transport systems are intimately involved in mediating the effects of growth regulatory factors on the growth of a number of different types of animal cells in vivo. The functional importance of the apical membrane $Na^+/H^+$ antiporter in the renal proximal tubule is evidenced by estimates that this transporter mediates the reabsorption of approximately one third of the filtered load of sodium and the bulk of the secretion of hydrogen ions. This study was designed to investigate the pathway utilized by IGF-I in regulating sodium transport in primary cultured renal proximal tubule cells. Results were as follows : 1. $Na^+$ was observed to accumulate in the primary cells as a function of time. Raising the concentration of extracellular NaCl induced an decrease in $Na^+$ uptake compared with control cells in a dose dependent manner. The rate of $Na^+$ uptake into the primary cells was about two times higher in the absence of NaCl($40.11{\pm}1.76pmole\;Na^+/mg\;protein/min$) than in the presence of 140mM NaCl($17.82{\pm}0.94pmole\;Na^+/mg\;protein/min$) at the 30 minute uptake. 2. $Na^+$ uptake was inhibited by IAA($1{\times}10^{-4}M$) or valinomycin($5{\times}10^{-6}M$) treatment($50.51{\pm}4.04$ and $57.65{\pm}2.27$ of that of control, respectively). $Na^+$ uptake by the primary proximal tubule cells was significantly increased by ouabain($5{\times}10^{-5}M$) treatment($140.23{\pm}3.37%$ of that of control). When actinomycin D($1{\times}10^{-7}M$) or cycloheximide($4{\times}10^{-5}M$) was applied, $Na^+$ uptake was decreased to $90.21{\pm}2.39%$ or $89.64{\pm}3.69%$ of control in IGF-I($1{\times}10^{-5}M$) treated cells, respectively. 3. Extracellular cAMP decreased $Na^+$ uptake in a dose-dependent manner($10^{-8}-10^{-4}M$). IBMX($5{\times}10^{-5}M$) also inhibited $Na^+$ uptake. Treatment of cells with pertussis toxin(50pg/ml) or cholera toxin($1{\mu}g/ml$) inhibited $Na^+$ uptake. Extracellular PMA decreased $Na^+$ uptake in a dose-dependent manner(1-100ng/ml). 100 ng/ml PMA concentration significantly inhibited $Na^+$ uptake in IGF-I treated cells. However, staurosporine($1{\times}10^{-7}M$) had no effect on $Na^+$ uptake. When PMA and staurosporine were added together, the inhibition of $Na^+$ uptake was not observed. In conclusion, sodium uptake in primary cultured rabbit renal proximal tubule cells was dependent on membrane potentials and intracellular energy levels. IGF-I stimulates sodium uptake through mechanisms that involve some degree of de novo protein and/or RNA synthesis, and cAMP and/or PKC pathway mediating the action mechanisms of IGF-I.

  • PDF

Evaluation of HalcyonTM Fast kV CBCT effectiveness in radiation therapy in cervical cancer patients of childbearing age who performed ovarian transposition (난소전위술을 시행한 가임기 여성의 자궁경부암 방사선치료 시 난소선량 감소를 위한 HalcyonTM Fast kV CBCT의 유용성 평가 : Phantom study)

  • Lee Sung Jae;Shin Chung Hun;Choi So Young;Lee Dong Hyeong;Yoo Soon Mi;Song Heung Gwon;Yoon In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.73-82
    • /
    • 2022
  • Purpose: The purpose of this study is to evaluate the effectiveness of reducing the absorbed dose to the ovaries and the quality of the CBCT image when using the HalcyonTM Fast kV CBCT of cervical cancer patients of child-bearing age who performed ovarian transposition Materials and Methods : Contouring of the cervix and ovaries required for measurement was performed on the computed tomography images of the human phantom (Alderson Rando Phantom, USA), and three Optically Stimulated Luminescence Dosimeter(OSLD) were attached to the selected organ cross-section, respectively. In order to measure the absorbed dose to the cervix and ovaries in the TruebeamTM pelvis mode (Hereinafter referred to as TP), The HalcyonTM Pelvis mode (Hereinafter referred to as HP) and The HalcyonTM Pelvis Fast mode (Hereinafter referred to as HPF), An image was taken with a scan range of 17.5 cm and also taken an image that reduced the Scan range to 12.5cm. A total of 10 cumulative doses were summed, It was replaced with a value of 23 Fx, the number of cervical cancer treatments, and compared In additon, uniformity, low contrast visibility, spatial resolution, and geometric distortion were compared and analyzed using Catphan 504 phantom to compare CBCT image quality between equipment. Each factor was repeatedly measured three times, and the average value was obtained by analysing with the Doselab (Mobius Medical Systems, LP. Versions: 6.8) program. Results: As a result of measuring absorbed dose by CBCT with OSLD, TP and HP did not obtain significant results under the same conditions. The mode showing the greatest reduction value was HPF versus TP. In HPF, the absorbed dose was reduced by 39.8% in the cervix and 19.8% in the ovary compared to the TP in the scan range of 17.5 cm. the scan range was reduced to 12.5 cm, absorbed dose was reduced by 34.2% in the cervix and 50.5% in the ovary. In addition, result of evaluating the quality of the image used in the above experiment, it complied with the equipment manufacturer's standards with Geometric Distortion within 1mm (SBRT standard), Uniformity HU, LCV within 2.0%, Spatial Resolution more than 3 lp/mm. Conclusion: According to the results of this experiment, HalcyonTM can select more various conditions than TruebeamTM in treatment of fertility woman who have undergone ovarian Transposition , because it is important to reduce the radiation dose by CBCT during radiation therapy. So finally we recommend HalcyonTM Fast kV CBCT which maintains image quality even at low mAs. However, it is consider that the additional exposure to low doses can be reduced by controlling the imaging range for patients who have undergone ovarian transposition in other treatment machines.