• Title/Summary/Keyword: 전염병 모델

Search Result 39, Processing Time 0.032 seconds

Patch Model-Based Epidemic Simulation System (패치 모델 기반의 전염병 시뮬레이션 시스템)

  • Choi, Hoon;Park, Dong-In
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.1465-1468
    • /
    • 2010
  • 지난 몇 년 동안 전염병 확산을 분석하기 위해 InfluSim 을 기반으로 한 시뮬레이션 모델에 대한 연구가 진행되어 왔다. InfluSim 은 국내 각 지역의 인구 통계학적 특성과 인구 이동 등을 고려하지 않는 한계점이 있다. 이러한 이유로 InfluSim 에 의한 시뮬레이션 결과로부터 전염병 확산에 대한 방역 대책을 마련하는 것은 부적절한 측면이 있다. 이러한 문제점을 극복하기 위해, 우리는 패치 모델을 개발하였다. 패치 모델은 전국을 16 개 권역으로 나누어 각 지역의 인구 통계학적인 특성을 고려하고, 각 지역 간의 인구 이동을 고려한다. 패치 모델은 InfluSim 모델을 기반으로 하고, 16 개 지역의 인구 통계학적 특성 및 지역 간의 인구 이동량을 네트워크 모델로 보완하였다. 본 논문은 패치 모델 기반의 시뮬레이션 시스템에 대해 서술한다.

The framework and application model for risk mitigation service based networks (농축산 전염병 위기완화서비스 체계구조 및 용용모델)

  • Chung, heechang;Kim, Dongil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.493-495
    • /
    • 2016
  • The framework and application model for risk mitigation service based on network provides monitoring function of the risk event data to be inputted and analyses it for mitigation process. Furthermore, it performs the analysis of the manmade calamities such as accident, building destruction, natural calamities caused by climate change, and animal harms caused by bird flu and foot-and-mouth disease occurring in livestock and wild animals, and provides the mitigation service of it. The application model for risk mitigation is combined with network and carries out the real time acquisition and monitoring of risk events, and provides mitigation service for the risks caused by calamities and reduces economic losses.

  • PDF

Analyzing the Impact of Pandemics on Air Passenger and Cargo Demands in South Korea

  • Jungtae Song;Irena Yosephine;Sungchan Jun;Chulung Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.99-106
    • /
    • 2023
  • 글로벌 팬데믹 사태는 항공 수요에 부정적인 영향을 끼치는 요소 중 하나다. 글로벌 팬데믹으로 인해 한국은 2020년과 2021년의 항공 승객 수가 2019년 대비 각각 68.1%와 47% 감소했다. 본 연구는 지난 20여년 동안 발생한 4대 팬데믹 특성을 분석, 전염병의 영향을 연구하는 것을 목표로 한다. SARS, H1N1, MERS 및 COVID-19의 발생기간 동안 한국의 항공 여객 및 화물 수요에 대한 실증 데이터를 활용하여 영향력을 분석한다. 또한 머신러닝 회귀 모델을 구축하여 향후 발생할 다른 전염병 대한 항공 수요를 예측하고자 한다. 연구 결과, 전염병이 항공 운항편수와 승객에 부정적인 영향을 미친다는 사실을 발견하였다. 반면화물 수송에는 긍정적인 영향을 미친다는 분석 결과를 도출하였다. 본 분석에 활용되는 회귀 모델은 팬데믹 기간 동안 항공수요를 예측하는 데 평균 86.8%의 기능을 보였다. 또한 본 연구는 특정 국가의 팬데믹 상황보다 전 세계적인 팬데믹 상황이 항공 운송 수요에 더 많은 영향을 미친다는 것을 보여준다.

Service Model Standardization of Risk Mitigation on Livestock Pandemic based on Network (네트워크 기반에서 가축 유행병 위기 완화 서비스 모델 표준화)

  • Kim, Dong Il;Chung, Hee Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.450-452
    • /
    • 2022
  • In this paper, we present a standard model of livestock epidemic service in the field of smart livestock, which is emerging as an important issue in smart agriculture. By using the network to identify the global livestock epidemic disease risk and provide relevant models to service users, it is expected that it will actually provide economic benefits to livestock owners and ultimately help the national livestock industry economy. In order to apply the standard livestock epidemic service standard model and the livestock infectious disease crisis mitigation standard model sharing method that is presented in conjunction with ICT to the standards in the domestic and international agricultural and livestock industries in the future, continuous research will be carried out.

  • PDF

Service Model Standardization of Risk Mitigation on Livestock Pandemic based on Network (네트워크 기반에서 가축 유행병 위기 완화를 위한 개념 모델 표준화)

  • Kim, Dong Il;Chung, Hee Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.12-14
    • /
    • 2022
  • In this paper, we present a standard conceptual model of livestock epidemic service in the field of smart livestock, which is emerging as an important issue in smart agriculture. By using the network to identify the global livestock epidemic disease risk and provide relevant models to service users, it is expected that it will actually provide economic benefits to livestock owners and ultimately help the national livestock industry economy. In order to apply the standard livestock epidemic service standard model and the livestock infectious disease crisis mitigation standard model sharing method that is presented in conjunction with ICT to the standards in the domestic and international agricultural and livestock industries in the future, continuous research will be carried out.

  • PDF

Prediction of infectious diseases using multiple web data and LSTM (다중 웹 데이터와 LSTM을 사용한 전염병 예측)

  • Kim, Yeongha;Kim, Inhwan;Jang, Beakcheol
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.139-148
    • /
    • 2020
  • Infectious diseases have long plagued mankind, and predicting and preventing them has been a big challenge for mankind. For this reasen, various studies have been conducted so far to predict infectious diseases. Most of the early studies relied on epidemiological data from the Centers for Disease Control and Prevention (CDC), and the problem was that the data provided by the CDC was updated only once a week, making it difficult to predict the number of real-time disease outbreaks. However, with the emergence of various Internet media due to the recent development of IT technology, studies have been conducted to predict the occurrence of infectious diseases through web data, and most of the studies we have researched have been using single Web data to predict diseases. However, disease forecasting through a single Web data has the disadvantage of having difficulty collecting large amounts of learning data and making accurate predictions through models for recent outbreaks such as "COVID-19". Thus, we would like to demonstrate through experiments that models that use multiple Web data to predict the occurrence of infectious diseases through LSTM models are more accurate than those that use single Web data and suggest models suitable for predicting infectious diseases. In this experiment, we predicted the occurrence of "Malaria" and "Epidemic-parotitis" using a single web data model and the model we propose. A total of 104 weeks of NEWS, SNS, and search query data were collected, of which 75 weeks were used as learning data and 29 weeks were used as verification data. In the experiment we predicted verification data using our proposed model and single web data, Pearson correlation coefficient for the predicted results of our proposed model showed the highest similarity at 0.94, 0.86, and RMSE was also the lowest at 0.19, 0.07.

Attention Modules for Improving Cough Detection Performance based on Mel-Spectrogram (사전 학습된 딥러닝 모델의 Mel-Spectrogram 기반 기침 탐지를 위한 Attention 기법에 따른 성능 분석)

  • Changjoon Park;Inki Kim;Beomjun Kim;Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.43-46
    • /
    • 2023
  • 호흡기 관련 전염병의 주된 증상인 기침은 공기 중에 감염된 병원균을 퍼트리며 비감염자가 해당 병원균에 노출된 경우 높은 확률로 해당 전염병에 감염될 위험이 있다. 또한 사람들이 많이 모이는 공공장소 및 실내 공간에서의 기침 탐지 및 조치는 전염병의 대규모 유행을 예방할 수 있는 효율적인 방법이다. 따라서 본 논문에서는 탐지해야 하는 기침 소리 및 일상생활 속 발생할 수 있는 기침과 유사한 배경 소리 들을 Mel-Spectrogram으로 변환한 후 시각화된 특징을 CNN 모델에 학습시켜 기침 탐지를 진행하며, 일반적으로 사용되는 사전 학습된 CNN 모델에 제안된 Attention 모듈의 적용이 기침 탐지 성능 향상에 도움이 됨을 입증하였다.

  • PDF

Prediction of COVID-19 Confirmed Cases in Consideration of Meteorological Factors (기상 요인을 고려한 일일 COVID-19 확진자 예측)

  • Choo, Kyung Su;Jeong, Dam;Lee, So Hyun;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.68-68
    • /
    • 2022
  • 코로나바이러스는(COVID-19)는 2019년 12일 중국 후베이성 우한시에서 시작된 코로나바이러스감염증으로 2020년 1월부터 전 세계로 퍼져, 일부 국가 및 지역을 제외한 대부분의 나라와 모든 대륙으로 확산되었다. 이에 WHO는 범 유행전염병(Pandemic)을 선언하였다. 2022년 3월 18일 현재 국내 누적 확진환자 8,657,609명과 11,782명의 사망자를 일으켰고 전 세계적으로도 많은 사상자를 내고 있는 실정이고 사회 및 경제적인 피해로도 계속 확대되고 있다. 많은 감염자와 사망자의수에 대한 예측은 코로나바이러스의 전염병을 예방하고 즉각적 조치를 취할 수 있는데 도움이 될 수 있다. 본 연구에서는 문화적 인자를 제외한 국내에서 연구 사례가 많지 않은 기상 요인을 인자로 포함하여 머신러닝 모델을 통해 확진자를 예측하였다. 그리고 여러 가지 모델을 성능 평가 기법인 Root Mean Square Error(RMSE) 및 Mean Absolute Percentage Error(MAPE)를 통해 성능을 평가하고 비교하여 정확도 높은 모델을 제시하였다.

  • PDF

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.

A Study on the Agent Based Infection Prediction Model Using Space Big Data -focusing on MERS-CoV incident in Seoul- (공간 빅데이터를 활용한 행위자 기반 전염병 확산 예측 모형 구축에 관한 연구 -서울특별시 메르스 사태를 중심으로-)

  • JEON, Sang-Eun;SHIN, Dong-Bin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.2
    • /
    • pp.94-106
    • /
    • 2018
  • The epidemiological model is useful for creating simulation and associated preventive measures for disease spread, and provides a detailed understanding of the spread of disease space through contact with individuals. In this study, propose an agent-based spatial model(ABM) integrated with spatial big data to simulate the spread of MERS-CoV infections in real time as a result of the interaction between individuals in space. The model described direct contact between individuals and hospitals, taking into account three factors : population, time, and space. The dynamic relationship of the population was based on the MERS-CoV case in Seoul Metropolitan Government in 2015. The model was used to predict the occurrence of MERS, compare the actual spread of MERS with the results of this model by time series, and verify the validity of the model by applying various scenarios. Testing various preventive measures using the measures proposed to select a quarantine strategy in the event of MERS-CoV outbreaks is expected to play an important role in controlling the spread of MERS-CoV.