본 논문에서는 이음매없는 모자이크 구성을 위한 영상 정렬 방법을 제안한다. 모자이크 구성을 위한 전역 움직임 추정 후, 전역 움직임 계수를 이용하여 모자이크를 구성하려면, 정렬이 올바르게 수행되지 않은 국부 영역이 존재하게 되고, 이러한 국부 영역에서는 선분의 끊김, 흐려짐, 겹침 현상이 일어난다. 전역 움직임 계수에 의해서 정렬되지 않은 국부 영역을 정렬하기 위해서는 잔여 움직임 추정 알고리즘이 필요하다. 그러나, 잔여 움직임 추정을 위해서는 카메라의 초점 거리나 조도 변화와 관계된 변수를 추정해야 하고, 또한 이에따른 많은 계산량을 요구하게 된다. 이러한 문제점을 해결하기 위해서, 본 논문에서는 추가적인 외부 변수의 추정 과정 없이 효율적으로 잔여 움직임을 추정할 수 있는 알고리즘을 제안한다. 제안된 방법에서는 잔여 움직임 추정 과정에서 사용되는 측정 및 추정 윈도우의 크기를 효율적으로 설정함으로써 잔여 움직임 정보를 효과적으로 추정할 수 있다. 제안된 단계적 잔여 움직임 알고리즘을 적용하여 모자이크를 구성함으로써, 전역 움직임 계수에 의해서 정렬되지 않았던 국부 영역의 흐려짐, 겹침 현상을 해결할 수 있음을 실험적으로 확인하였다.
서열 정렬에 있어서 전체를 비교하여 두 서열 사이의 최대의 유사성 또는 상동성을 찾는 전역 정렬은 넓은 범위를 선호하게 되는 편향성을 갖게 된다. 비일치 부분을 과감히 제거하고 높은 일치도를 갖는 부분 영역을 정렬하게 되면 정렬점수를 높이는 효과를 갖게 된다. 여러 개의 부분 지역 정렬을 탐색하게 하는 다중 지역정렬 방법을 적용하여 다수의 지역정렬을 수행하는 알고리즘을 구현하고 결과를 분석해 본다. 지역 정렬에 일반적으로 사용되는 Smith-Waterman 알고리즘의 제한점 중 하나인 서열이 길어지는 것을 방지하고, sub-optimal sequence를 찾기 위한 방법을 응용하여 다중지역 정렬을 수행한다.
영상처리를 이용한 영상간의 유사도 비교 기법은 영상의 검색 및 영상의 자동 인식 등을 위한 연구로 최근 각광받고 있다. 최근 영상 처리 기법은 화소의 질적 향상 및 처리시간 최적화, 효율적인 특정 요소의 추출 등 다양한 방법으로 시도되고 있다. 특히, 영상의 유사도 비교는 유사 영상 검색과 같은 경우에 많이 쓰인다. 영상의 유사도를 비교하기 위한 기법으로는 영상 데이터의 특징에 따라 대상 영역을 여러 영역으로 나누는 영역분할 기법과 군집화, 퍼지, 유전자 알고리즘 등이 있다. 본 논문에서는 영상을 HSV 색공간으로 변환한 후 색상 값에 대하여 전역 정렬 기법을 사용하는 유사도 측정 방법을 제시한다. 전역 정렬 기법은 유전자 서열 비교 기법 중 하나로서 두 유전체의 유사도를 측정하는데 사용된다. 유사도 측정 효율을 높이기 위해 색상 값을 8단계로 양자화하여 영상의 서열을 생성하였다. 실험결과 제시한 방법을 영상 회전이나 대칭, 글자 삽입 등의 간단한 연산에 크게 영향을 받지 않는 것으로 드러났다.
본 논문에서는 영상의 일부가 겹치는 두 영상사이에 투영 평면 변환을 사용하여 보다 큰 한 장의 모자익 영상으로 정렬하는 알고리즘을 제한한다. 먼저 블록 정합을 이용하여 초기전역 이동을 계산하고, 4점을 이용하여 효율적인 투영 변환을 구하고, 두 영상사이에 겹치는 부분에서 RGB 컬러를 혼합하여 합성 영상을 생성하였다.
최근 들어, 대용량의 데이터를 처리할 수 있는 트리 생성 방법에 많은 관심이 집중되고 있다 그러나 대용량 데이터를 위한 대부분의 알고리즘은 일괄처리 방식으로 데이터를 처리하기 때문에 새로운 데이터가 추가되면 이 데이터를 반영한 결정 트리를 생성하기 위해 처음부터 트리를 다시 생성해야 하다. 이러한 재생성에 따른 비용문제에 보다 효율적인 접근 방법은 결정 트리를 순차적으로 생성하는 접근 방법이다. 대표적인 알고리즘으로 BOAT와 ITI를 들 수 있으며 이들 알고리즘은 수치형 데이터 처리를 위해 지역적 범주화를 이용한다. 그러나 범주화는 정렬된 형태의 수치형 데이터를 요구하기 때문에 대용량 데이터를 처리해야하는 상황에서 전체 데이터에 대해 한번만 정렬을 수행하는 전역적 범주화 기법이 모든 노드에서 매번 정렬을 수행하는 지역적 범주화보다 적합하다. 본 논문은 수치형 데이터 처리를 위해 전역적 범주화를 이용하여 생성된 트리를 효율적으로 재생성하는 순차적 트리 생성 방법을 제안한다. 새로운 데이터가 추가될 경우, 전역적 범주화에 기반 한 트리를 순차적으로 생성하기 위해서는 첫째, 이 새로운 데이터가 반영된 범주를 재생성해야 하며, 둘째, 범주 변화에 맞게 트리의 구조를 변화시켜야한다. 본 논문에서는 효율적인 범주 재생성을 위해 샘플 분할 포인트를 추출하고 이로부터 범주화를 수행하는 기법을 제안하며 범주 변화에 맞는 트리 구조 변화를 위해 신뢰구간과 트리 재구조화기법을 이용한다. 본 논문에서 피플 데이터베이스를 이용하여 기존의 지역적 범주화를 이용한 경우와 비교 실험하였다.
정렬되지 않은 3차원 측정 점들로부터 이들을 근사하는 표면을 재구성하는 방법을 제안하였다. 제안된 방법은 경계면 축소포장 방식에 의한 표면 재구성 방법 (shrink-wrapped boundary face : SWBF)으로, 측정 점으로부터 경계셀과 경계면을 구해 초기 메쉬를 생성하고 이를 연속적으로 축소하는 방식에 의해 표면을 재구성한다 제안된 방법은 기존의 표면 축소포장 방식의 메쉬 생성 방법의 문제점인 물체의 토폴로지에 대한 제악이 없이 어떠한 형태의 표면 재구성에도 적용이 가능하며, 기존 방법이 축소 단계에서 각 메쉬 정점에 대한 최단거리 측정점을 찾는 전역 탐색을 해야 하는데 비해 지역 탐색만으로 최적의 측정 점을 찾을 수 있으므로 처리 시간 측면에서도 우월하다. 실험을 통해 제안된 표면 재구성 알고리즘이 측정 점들간의 관계를 알 수 없는 정렬되지 않은 3차원 정들에 대한 표면 재구성에 매우 안정적이고 효과적임을 확인할 수 있었다.
시계열 데이터에서 패턴을 분석하는 기법은 많은 발전이 이루어져 오고 있다. 그러나 주식시장의 경우 시계열 데이터임에도 불구하고 패턴 분석 및 예측은 많은 연구가 이루어지지 않고 있으며 예측도가 매우 낮다. 그 이유는 주가의 등락 자체가 본질적으로 무작위하다고 하면 어떠한 과학적 방법으로도 그 예측은 불가능하다. 본 연구에서는 주가의 등락이 보여주는 무작위성의 정도를 Kolmogorov 복잡도를 이용해 측정하여 그 무작위의 정도와 본 논문에서 제시한 반 전역정렬(semi-global alignment)로 예측할 수 있는 주가의 예측의 정확간의 깊은 상관관계가 있음을 보인다. 이를 위해서 주가지수의 등락을 양자화된 문자열로 변환하고 그 문자열의 Kolmogorov 복잡도를 이용해 주가 변동의 무작위성을 측정하였다. 우리는 KOSPI 주식 데이터 28년 690개의 데이터를 수집하여 이를 실험용 데이터로 사용하여 본 논문에서 제시한 방법의 의미를 평가하였다. 그 결과 Kolmogorov 복잡도가 높은 경우에는 변동 예측이 어려우며, Kolmogorov 복잡도가 낮은 경우에는 주식 변동 예측은 가능하나 3종류의 예측율에 대해서 투자자들이 관심이 많은 등락 예측율은 단기 예측은 12% 이상의 예측율을 보일 수 없으며, 장기 예측의 경우 54%의 예측율로 수렴함을 확인하였다.
기존 웹의 단점을 보완하기 위해 시맨틱 웹 개념이 제안되었고, 시맨틱 웹에서 중요한 역할을 하는 온톨로지는 분산 독립된 형태로 개발되는 특성으로 인해 동일한 도메인에 대해 중복 저작될 수 있는 문제점을 가지고 있다. 따라서 온톨로지의 공유와 재사용이 중요한 문제로 부각되고 있으며, 온톨로지 병합 덴 정렬이 한 해결책이 될 수 있다. 현재까지 제안된 반자동 방식의 온톨로지 병합 및 정렬 알고리즘은 온톨로지 전체에서 가지는 의미정보가 아닌 지역적 구문정보만을 이용하고, 반자동 작업 특징으로 인해 온톨로지 엔지니어에게는 지루한 작업이 되어 결과의 품질이 낮아질 수 있다는 단점이 있다. 본 논문에서는 지역 및 전역 의미집합 개념을 이용하여 이러한 단점을 개선한 온톨로지 병합 및 정렬 알고리즘을 제안하였다. 제안된 알고리즘을 구현하여 OWL 언어로 작성된 온톨로지에 대해 실험한 결과 91%의 정확도를 보였다. 본 논문에서 제안하는 알고리즘을 이용하여 온톨로지 병합 및 정렬 작업을 수행하면 온톨로지 공유 및 재활용률을 높이고, 기존 온톨로지를 활용한 새로운 온톨로지의 저작시간도 단축시킬 수 있을 것으로 기대된다. 또한, 온톨로지 매핑등 온톨로지들 간의 의미 정보 교환이 필요한 다른 어떤 분야에도 쉽게 적용이 가능할 것으로 기대된다.
대부분의 교사학습 알고리즘은 수치형 변수 처리의 어려움을 해결하기 위해 전처리 단계에서 연속형 변수를 범주형으로 변환시킨 후 적용된다. 이러한 전처리 단계를 전역적 범주화라 하며 빈즈(Bins)라는 클래스 분포 리스트를 이용한다. 그러나 대부분의 전역적 범주화 기법은 단일 빈즈를 필요로 하기 때문에 데이타가 대용량이고 범주화를 수행할 변수의 범위가 매우 클 경우, 단일 빈즈를 생성하기 위해 많은 정렬 및 병합을 수행해야한다. 또한, 기존의 방법은 일괄처리 방식으로 범주화를 수행하기 때문에 새로운 데이타가 추가되면 이 데이타가 반영된 범주를 생성하기 위해 처음부터 범주화를 다시 수행해야한다. 본 논문은 이러한 문제점을 해결하기 위해 샘플 분할 포인트를 추출하고 이로부터 범주화를 수행하는 기법을 제안한다. 본 논문의 접근 방법은 단일 빈즈를 생성하기 위한 병합이 필요 없기 때문에 대용량 데이타에 대한 범주화를 수행할 때 효율적이다. 본 연구에서는 실제 데이타와 가상의 데이타를 이용하여 기존의 방법과 비교 실험하였다.
정렬되지 않은 3차원 측정점들로부터 이들을 근사하는 표면을 재구성하는 방법을 제안하였다. 제안된 방법은 경계면 축소포장 방식에 의한 표면 재구성 방법(shrink-wrapped boundary face: SWBF) 으로, 측정점으로부터 경계셀과 경계면을 구해 초기 메쉬를 생성하고 이를 연속적으로 축소하는 방식에 의해 표면을 재구성한다. 제안된 방법은 기존의 표면 축소포장 방식의 메쉬 생성 방법의 문제점인 물체의 토폴로지에 대한 제약이 없이 어떠한 형태의 표면 재구성에도 적용이 가능하며, 기존 방법이 축소 단계에서 각 메쉬 정점에 대한 최단거리 측정점을 찾는 전역 탐색을 해야 하는데 비해 지역 탐색만으로 최적의 측정점을 찾을 수 있으므로 처리 시간 측면에서도 우월하다. 실험을 통해 제안된 표면 재구성 알고리즘이 측정점들간의 관계를 알 수 없는 정렬되지 않은 3차원 점들에 대한 표면 재구성에 매우 안정적이고 효과적임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.