• 제목/요약/키워드: 전역적 형상 특징 추출

검색결과 2건 처리시간 0.017초

방사 기저 함수 신경망을 이용한 3차원 얼굴인식 (3D face recognition based on radial basis function network)

  • 양욱일;손광훈
    • 대한전자공학회논문지SP
    • /
    • 제44권2호
    • /
    • pp.82-92
    • /
    • 2007
  • 본 논문에서는 3차원 얼굴인식을 위한 방사 기저 함수 신경망 기반의 새로운 전역적 형태 특징과 그 특징을 추출하는 방법을 제안한다. 방사 기저 함수 신경망은 방사 기저 함수들의 가중합으로써, 얼굴 형태 정보의 비선형성을 방사 기저 함수의 선형합으로 잘 표현한다. 이 논문에서는 얼굴의 가로 방향 프로파일을 학습된 방사 기저 함수 신경망에 적용시켰을 때 생성되는 가증치를 새로운 전역적 형태 특징으로 제안한다. 제안하는 전역적 형태 특징의 경우 국소적 특징의 특성을 가지며, 일반적인 전역적 특징의 특성인 특징의 복잡도도 감소시킨다. 100명의 데이터베이스 영상과 100명에 대한 서로 다른 3개의 포즈를 포함하는 300개의 테스트 영상을 이용한 실험에서 제안하는 전역적 형태 특징과 은닉 마르코프 모델을 이용한 특징 비교를 통해서 94.7%의 인식률을 얻었다.

주 인자 분석을 이용한 제스처 인식에 관한 연구 (A Study on Gesture Recognition Using Principal Factor Analysis)

  • 이용재;이칠우
    • 한국멀티미디어학회논문지
    • /
    • 제10권8호
    • /
    • pp.981-996
    • /
    • 2007
  • 본 논문에서는 연속적인 제스처 영상으로 부터 주 인자 분석을 통해 얻어진 동작 특징 정보를 이용하여 제스처를 인식하는 방법에 대해 기술한다. 제안된 방법은 먼저, 인간의 신체 영상이 포함된 연속적인 입력영상에서 2차원 실루엣 제스처 영역을 분할한 다음 전역특징정보와 지역특징정보를 추출한다. 여기서 전역특징정보는 요인 분석을 통하여 제스처를 효과적으로 표현하는 의미 있는 소수의 핵심 특징을 선택하여 이용한다. 추출 된 특징정보로 부터 제스처의 시간 변화를 나타내는 특징히스토리정보를 얻어 저 차원 제스처공간을 구성한다. 마지막으로 제스처 공간상에 투영된 모델 특징 값은 은닉마르코프 모델의 입력 기호로 이용되기 위해 군집화 알고리즘을 통해 특정한 상태 기호로 구성되며 임의의 입력 동작은 확률 값이 가장 높은 해당 제스처 모델로 인식된다. 주 인자 분석으로부터 제스처에 기여도가 높은 특징인자로 모델을 구성하기 때문에 외관기반방법에서 몸의 형상 정보만을 특징 값으로 이용하거나 직관적인 방법으로 특징을 추출하는 방법보다 복잡한 동작에서 비교적 우수한 인식률을 나타낸다.

  • PDF