• Title/Summary/Keyword: 전역민감도해석

Search Result 8, Processing Time 0.021 seconds

Global Sensitivity Analysis of Joints for Plug-in Digital Framework (플러그인 디지털 프레임웍을 위한 연결부 전역민감도 해석)

  • Lee, Dooho;Won, Young-Woo;Kwon, Jong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.483-488
    • /
    • 2016
  • Plug-In Digital Framework is a system response analysis tool that is employed when system components are composed of black-box modules. Generally, the dynamic characteristics of joints between the system components significantly affect system responses, and they lead to displacement- and frequency-dependent stiffness and loss factor. Thus, the sensitivity of each joint parameters should be estimated from a global perspective. In this study, we introduce a global sensitivity analysis procedure under the Plug-In Digital Framework. To efficiently calculate the system responses, we introduce the frequency response function (FRF)-based substructuring method. Using the random balance designs (RBD), we generate the system responses and estimate the global first-order sensitivities for each joint stiffness. We apply the proposed global sensitivity analysis method to an interior noise problem of a passenger car, and we evaluate the efficiency of the global sensitivity analysis method.

Lateral Drift Control of High-rise Buildings using Partial Reanalysis Algorithm (부분재해석 기법을 이용한 고층건물 횡변위제어)

  • Lee, Jae-Cheol;Kim, Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.81-88
    • /
    • 2009
  • This paper alined at the development of a lateral drift control method that is able to quantitatively control the lateral drift of global node. For this, we applied an efficient partial reanalysis algorithm. By using this algorithm, we could recalculate the displacement and member force of the specific node without reanalyzing the entire structure when member stiffness changes partially. The theoretical concepts of the algorithm are so simple that it is not necessary to solve the complicate differential equation or to repeat the analysis of entire structure. The proposed method calculates the drift contribution of each member for the global displacement according to the variation of section sizes by using the algorithm. Then by changing the member sizes as the order of drift contribution, we could control the lateral drift of global node with a minimum quantity of materials. 20 story braced frame structure system is presented to illustrate the usefulness of proposed method. It is shown that the proposed method is very effective in lateral drift control and the results obtained by proposed method are consistent with those of commercial analysis program.

Automatic Calibration of SWAT Model Using LH-OAT Sensitivity Analysis and SCE-UA Optimization Method (LH-OAT 민감도 분석과 SCE-UA 최적화 방법을 이용한 SWAT 모형의 자동보정)

  • Lee Do-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8 s.169
    • /
    • pp.677-690
    • /
    • 2006
  • The LH-OAT (Latin Hypercube One factor At a Time) method for sensitivity analysis and SCE-UA (Shuffled Complex Evolution at University of Arizona) optimization method were applied for the automatic calibration of SWAT model in Bocheong-cheon watershed. The LH-OAT method which combines the advantages of global and local sensitivity analysis effectively identified the sensitivity ranking for the parameters of SWAT model over feasible parameter space. Use of this information allows us to select the calibrated parameters for the automatic calibration process. The performance of the automatic calibration of SWAT model using SCE-UA method depends on the length of calibration period, the number of calibrated parameters, and the selection of statistical error criteria. The performance of SWAT model in terms of RMSE (Root Mean Square Error), NSEF (Nash-Sutcliffe Model Efficiency), RMAE (Relative Mean Absolute Error), and NMSE (Normalized Mean Square Error) becomes better as the calibration period and the number of parameters defined in the automatic calibration process increase. However, NAE (Normalized Average Error) and SDR (Standard Deviation Ratio) were not improved although the calibration period and the number of calibrated parameters are increased. The result suggests that there are complex interactions among the calibration data, the calibrated parameters, and the model error criteria and a need for further study to understand these complex interactions at various representative watersheds.

Comparative assessment for Design Oriented Structural Reanalysis Models (설계지향 구조 재해석 모델의 비교 평가)

  • Hwang, Jin Ha;Lee, Jae Seok;Kim, Kyeong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.45-54
    • /
    • 2000
  • Design-oriented approximate structural reanalysis models are compared and assessed, particularly with focus on the case of large changes of design variables. The effectiveness and reliability are demonstrated by means of numerical examples. The results of the study suggest the following conclusions relative to the potential of the procedures. (A) local approximation is only appropriate for the case of small changes in design : (B) global approximation is exact for the case of large changes in a small number of design variables, but inefficient : (C) local-global approximation is most effective and reliable for the case of large changes with a large number of design variables. These methods can improve the total efficiency when they are appropriately used to the design information for the redesign process of large scale structures.

  • PDF

A Study on the Optimization Method using the Genetic Algorithm with Sensitivity Analysis (민감도가 고려된 알고리듬을 이용한 최적화 방법에 관한 연구)

  • Lee, Jae-Gwan;Sin, Hyo-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1529-1539
    • /
    • 2000
  • A newly developed optimization method which uses the genetic algorithm combined with the sensitivity analysis is presented in this paper. The genetic algorithm is a probabilistic method, searching the optimum at several points simultaneously, requiring only the values of the object and constraint functions. It has therefore more chances to find global solution and can be applied various problems. Nevertheless, it has such shortcomings that even it approaches the optimum rapidly in the early stage, it slows down afterward and it can't consider the constraints explicitly. It is only because it can't search the local area near the current points. The traditional method, on the other hand, using sensitivity analysis is of great advantage in searching the near optimum. Thus the combination of the two techniques makes use of the individual advantages, that is, the superiority both in global searching by the genetic algorithm and in local searching by the sensitivity analysis. Application of the method to the several test functions verifies that the method suggested is very efficient and powerful to find the global solutions, and that the constraints can be considered properly.

Evaluation of Parameters in Flood Forecasting Model (홍수예보모형 매개변수 평가)

  • Chung, Gun-Hui;Park, Hee-Seong;Sung, Ji-Youn;Kim, Hyeon-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.636-636
    • /
    • 2012
  • 우리나라에서 가장 심각한 자연재해가 홍수재해이므로, 홍수기에 홍수예보를 하는 것은 매우 중요한 일이다. 홍수예보를 위한 예측 과정은 강우예측과 유출해석부분으로 크게 나눌 수가 있는데, 강우를 정확하게 예측하는 일은 주로 정교한 강우모형과 기상학자들의 몫으로 남겨놓는다고 하더라도 정확한 유출해석은 오랜 동안 수문학자들에게 중요한 고민거리였으며, 특히 우리나라와 같이 홍수재해에 취약한 지역에서는 더욱 간절한 문제가 되었다. 우리나라에서는 국가하천을 대상으로 홍수예보모형을 개발하여 하천의 주요지점에 대한 홍수예보를 시행하고 있으며, 매년 보다 정확하고 신속한 예보를 통해 피해를 줄이기 위해 많은 노력을 기울이고 있다. 본 연구에서는 전역최적화기법인 SCE-UA방법을 이용하여 홍수예보모형의 매개변수의 최적화를 수행하였다. 그러나 최적화기법에 의해 제안된 매개변수들이 강우-유출모형이나 유역의 물리적인 특성을 반영하지 못한다는 비판을 피하기 위해 다단계의 최적화를 통해 유역의 물리적인 특성을 반영하면서도 유출수문곡선을 성공적으로 재현하는 매개변수를 제안하고, 각 매개변수가 가지는 의미를 평가하여 실무에서 홍수예보업무의 효율을 높이는데 도움을 주는 것을 목적으로 하였다. 연구를 위해 매개변수의 민감도 분석을 수행하고, 민감도에 따라 최적화 하는 방법을 다르게 적용하였다. 또한 유역의 물리적인 특성을 나타내는 매개변수와 강우의 특성에 따라 변화하는 매개변수를 구분하여, 유역별 다른 매개변수의 범위를 제안하였다. 제안된 매개변수는 검증을 통하여 적용성을 확인하였으며, 유역별 다양한 특성을 성공적으로 나타내었다.

  • PDF

Multi-Objective Optimization of Steel Frames For Standardized Steel Profiles Under Seismic Loads (지진하중을 받는 강뼈대구조물의 표준단면에 대한 다목적 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Jeong, Bong Gyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.783-791
    • /
    • 2002
  • An improved formulation for multi-objective optimization was proposed. This formulation was applied to steel seismic loads. The multi-objective optimization problem was formulated with minimum structural weight, maximum strstability. The global criterion method was employed to find a rational solution closest to the ideal solution for the optimization problem using standard steel profile, To efficiently solve the optimization problem, the decomposition meth both system-level and element-level was used. In addition, various techniques including efficient reanalysis technique intermediate variables and sensitivity analysis using an automatic differentiation(AD) were incorporated. Moreover the reamong section properties fitted to the section profile used in order to link the system level and the element level. From numerical investigation, it could be stated that the proposed method will lead to the more rational design compared with one.

GA-Based Optimal Design for Vibration Control of Adjacent Structures with Linear Viscous Damping System (선형 점성 감쇠기가 장착된 인접구조물의 진동제어를 위한 유전자 알고리즘 기반 최적설계)

  • Ok, Seung-Yong;Kim, Dong-Seok;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.11-19
    • /
    • 2007
  • This paper proposes an optimal design method of distribution and capacities of linear viscous dampers for vibration control of two adjacent buildings. The previous researches have dealt with suboptimal design problem under the assumption that linear viscous dampers are distributed uniformly or proportionally to the sensitivity of the modal damping ratio according to floors, whereas this study deals with global optimization problem in which the damping capacities of each floor are independently selected as design parameters. For this purpose, genetic algorithm to effectively search multiple design variables in large searching domains is adopted and objective function leading to the global optimal solutions is established through the comparison of several optimal design values obtained from different objective functions with control performance and damping capacity. The effectiveness of the proposed method is investigated by comparing the control performance and total damping capacity designed by the proposed method with those of the previous method. In addition, the time history analyses are performed by using three historical earthquakes with different frequency contents, and the simulation results demonstrate that the proposed method is an effective seismic design method for the vibration control of the adjacent structures.