• Title/Summary/Keyword: 전압 이득

Search Result 546, Processing Time 0.024 seconds

Design of a V Band Power Amplifier Using 65 nm CMOS Technology (65 nm CMOS 공정을 이용한 V 주파수대 전력증폭기 설계)

  • Lee, Sungah;Cui, Chenglin;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.403-409
    • /
    • 2013
  • In this work, a CMOS two stage differential power amplifier which includes Marchand balun, transformer and injection-locked buffer is presented. The power amplifier is targeted for 70 GHz frequency band and fabricated using 65 nm technology. The measurement results show 8.5 dB maximum voltage gain at 71.3 GHz and 7.3 GHz 3 dB bandwidth. The measured maximum output power is 8.2 dBm, input $P_{1dB}$ is -2.8 dBm, output $P_{1dB}$ is 4.6 dBm and maximum power added efficiency is 4.9 %. The power amplifier consumes 102 mW DC power from 1.2 V supply voltage.

0.11μm CMOS Low Power Broadband LNA design for 3G/4G LTE Environment (3G, 4G LTE 환경에 적합한 0.11μm CMOS 저전력, 광대역의 저잡음증폭기 설계)

  • Song, Jae-Yeol;Lee, Kyung-Hoon;Park, Seong-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.1027-1034
    • /
    • 2014
  • We present the Low Power Broadband Low noise amplifier(LNA) that can be applied a whole bandwidth from 3G to 4G LTE. This multi input LNA was designed to steadily amplify through a multi input method regardless the size of the input signal and operate on a wide range of frequency band from a standard 3G CDMA band 1.2GHz to LTE band 2.5GHz. The designed LNA consumes an average of 6mA on a 1.2V power supply and this was affirmed using computer simulation tests. The amplification which was corresponded to the lowest input signal is at a maximum of 20dB and was able to obtain the minimum value of the gain of -10dB. The Noise figure is less than 3dB at a High-gain mode and is less than 15dB at a Low-gain mode.

Frequency and power stabilization of radio frequency excited CO2 laser using photoacoustic effect (광음향 효과에 의한 고주파 여기식 CO2 레이저의 주파수 및 출력 안정화)

  • Choi, Jong-Woon;Yu, Moon-Jong;Woo, Sam-Yong;Suh, Ho-Suhng
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.569-574
    • /
    • 2004
  • We stabilized the frequency and power of a CW radio-frequency-excited $CO_2$ laser on the peak of the Doppler broadened gain curve using the photoacoustic effect generated from the laser itself. The condenser microphone is installed in the radio frequency discharge chamber to detect a photoacoustic signal. The photoacoustic signal is fed to a lock-in stabilizer as a reference signal for stabilization. The frequency stability is estimated to be better then 5.4${\times}$10$^{-8}$ at the P(20) line. The stabilized output variation was reduced 9.3%, compared to 100% for a free running laser.

Design and Analysis of an Impedance-Tuned Monopole Microstrip Patch Antenna using the Finite Difference Time Domain Method (유한 차분 시간 영역 해석법을 이용한 임피던스 정합 모노폴 마이크로스트립 안테나 설계 및 해석)

  • Jung, Young-Ho;Lee, Dong-Cheol;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.11
    • /
    • pp.28-33
    • /
    • 2002
  • In this paper, the impedance-tuned monopole microstrip antenna designed for PCS is analyzed using finite difference time domain(FDTD) method. The perfectly matched layer(PML) absorbing material condition proposed by Berenger is used for the truncation of finite difference time domain lattice. A Gaussian pulse is selected as an excitation signal and a resistive voltage source model is used to reduce the error caused by the reflection waves. The FDTD method is inherently a near field technique. Therefore, the near field to far field transformation is need to compute far field antenna parameters such as radiation patterns and gain. The near field to far field transformation can be done both in the time domain and the frequency domain. We use the frequency domain transformation to compute the far field radiation patterns at single frequency. All the numerical results obtained by the FDTD method are compared with simulation results using the HFSS software. Good agreements are obtained in all cases.

Wide-Band 6~10 GHz InGaAs 0.15μm pHEMT 27 dBm Power Amplifier (광대역 응용을 위한 6~10 GHz InGaAs 0.15μm pHEMT 27 dBm급 전력증폭기)

  • Ahn, Hyun-Jun;Sim, Sang-Hoon;Park, Myung-Cheol;Kim, Seung-Min;Park, Bok-Ju;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.766-772
    • /
    • 2018
  • A 6~10 GHz wide-band power amplifier was designed using an InGaAs enhancement-mode(E-mode) $0.15{\mu}m$ pseudomorphic high-electron-mobility transistor(pHEMT). The positive gate bias of the E-mode pHEMT device removes the need for complex negative voltage generation circuits, therefore reducing the module size. The wire bond and substrate loss parameters were modeled and extracted using a three-dimensional electromagnetic(3D EM) simulation. For wideband characteristics, lossy matching was adopted and the gate bias was optimized for maximum power and efficiency. The measured gain, in/output return loss, output power, and power-added efficiency were greater than 20 dB, 8 dB, 27 dBm, and 35 %, respectively, in the 6~10 GHz band.

A Study on Ultra-Wideband Patch Antenna with Modified Barrel Shape (변형된 항아리형 초 광대역 패치안테나의 설계에 관한 연구)

  • Kim, Sun-Hyo;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.263-270
    • /
    • 2016
  • This paper implemented an ultra-wideband(: UWB) antenna by using a modified barrel-shaped patch antenna. The designed UWB patch antenna was optimized to match UWB technical specifications by considering the sizes of barrel circle and oval(notch) which is distance between the patch and contact surface and designed antenna was implemented by $10mm(R1){\times}21.8mm$ size. Optimal values on the basis of simulated reflective loss results, the surface current distribution of designed patch antenna was analyzed in order to check operation mode of antenna and wideband mechanism. Experimental results of implemented UWB antenna, Return loss of UWB antenna the voltage standing wave ratio was 2 or less in the 1.775-13.075 GHz band, VSWR in 2 or less. And the maximum gain of approx. 1-3 dBi was found in 3.1-10.6 GHz. This result satisfied the characteristics of ultra-wideband and the proposed antenna will be applicable to an ultra-wideband system.

Compact Dual-band Double Dipole Quasi-Yagi Antenna with V-shaped Ground Plane (V-모양 접지면을 가지는 소형 이중 대역 이중 다이폴 준-야기 안테나)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.436-441
    • /
    • 2018
  • In this paper, a design method for a compact double dipole quasi-Yagi antenna with a V-shaped ground plane operating in dual bands including 2.45 GHz and 5 GHz wireless LAN frequency bands is studied. First, a quasi-Yagi antenna operating in the 2.45 GHz band is designed, and a V-shaped ground plane is used instead of a conventional strip ground plane to reduce the length of the antenna. A second dipole is connected to the dipole driver of the quasi-Yagi antenna for 2.45 GHz band and a director is appended for 5 GHz band operation. A prototype of the proposed dual-band antenna operating at 2.45 GHz WLAN band and 4.57-7.11 GHz band is fabricated on an FR4 substrate with a dimension of 40 mm by 55 mm. Fabricated antenna shows frequency bands of 2.33-2.75 GHz and 4.38-7.5 GHz for a voltage standing wave ratio less than 2. Measured gain remains more than 4 dBi in both bands.

Design of Dual-band Monopole Antenna for WLAN and UWB Applications (WLAN 및 UWB 응용을 위한 이중 대역 모노폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.811-817
    • /
    • 2014
  • In this paper, a design method for a dual-band monopole antenna operating in the bands of 2.45 GHz WLAN and UWB is studied. A monopole antenna operating in UWB band is first designed, and a slot is inserted on the monopole to operate in 2.45 GHz WLAN band. The optimized dual-band monopole antenna is fabricated on an FR4 substrate, and the experimental results show that the antenna has a dual-band characterisitc in WLAN and UWB bands with the frequency bands of 2.35-2.50 GHz and 2.99-11.82 GHz for a VSWR < 2. Measured gain is 1 dBi at 2.45 GHz, and ranges 1.5-4.6 dBi in the frequency band of 3.1-10.6 GHz.

Broadband Quasi-Yagi Antenna with a Ring-type Balun for Indoor DTV Reception (링형 밸런을 이용한 실내 DTV 수신용 광대역 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.906-912
    • /
    • 2017
  • In this paper, we studied a design method for a broadband 3-element quasi-Yagi antenna (QYA) for indoor digital television (DTV) reception. The proposed QYA employs a novel balun between a microstrip (MS) line and a coplanar strip (CPS) line feeding the driver dipole. The proposed balun is constructed by connecting the end of MS line to CPS line through a shorting pin, and the CPS and ground reflector are connected through a circular ring-type conductor. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The antenna fabricated on an FR4 substrate with a size of $270mm{\times}150mm$ showed a good performance such as a frequency band of 470-820 MHz for a voltage standing wave ratio < 2, a gain > 4.0 dBi, and a front-to-back ratio > 8.4 dB over the DTV frequency band.

Development of a High-Performance Bipolar EEG Amplifier for CSA System (CSA 시스템을 위한 양극 뇌파증폭기의 개발)

  • 유선국;김창현;김선호;김동준
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.205-212
    • /
    • 1999
  • When we want to observe and record a patient's EEG in an operating room, the operation of electrosurgical unit(ESU) causes undesirable artifacts with high frequency and high voltage. These artifacts make the amplifiers of the conventional EEG system saturated and prevent the system from measuring the EEG signal. This paper describes a high-performance bipolar EEG amplifier for a CSA (compressed spectral array ) system with reduced ESU artifacts. The designed EEG amplifier uses a balanced filter to reduce the ESU artifacts, and isolates the power supply and the signal source of the preamplifier from the ground to cut off the current from the ESU to the amplifier ground. To cancel the common mode noise in high frequency, a high CMRR(common mode rejection ratio) diffferential amplifier is used. Since the developed bipolar EEG amplifier shows high gain, low noise, high CMRR, high input impedance, and low thermal drift, it is possible to observe and record more clean EEG signals in spite of ESU operation. Therefore the amplifier may be applicable to a high-fidelity CSA system.

  • PDF