• Title/Summary/Keyword: 전암대자율

Search Result 29, Processing Time 0.024 seconds

A Comparative Study on the Whole Rock Magnetic Susceptibility and SHRIMP Zircon U-Pb Geochronology of the Domestic Dimension Stone and Chinese similar Dimension Stone (전암대자율 특성과 SHRIMP 저어콘 U-Pb 연대 측정을 통한 국내 석재와 중국 유사 석재의 비교 연구)

  • Kim, Kun-Ki;Jwa, Yong-Joo;Hong, Sei-Sun;Lee, Ki-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.273-289
    • /
    • 2015
  • This study used the petrological features and the whole rock susceptibility characteristics suggest ways to determine the domestic dimension stones and Chinese similar dimension stones. In addition, this study compare the intrusive period by measuring the zircon U-Pb age of these stones. Result of comparing the petrological feature, with the exception of Macheon stone and Boryeong stone to show the differences in mineral composition and texture under a microscope, the domestic dimension stones and Chinese similar dimension stones exhibit substantially the same petrological feature. According to the measurement results for the whole rock magnetic susceptibility, Goheong, Iksan, Pocheon stones are the similar as Chinese dimension stones, and other stones are easily distinguished. The zircon U-Pb age results for Geochang, Iksan, and Pocheon stones are equivalent to the Jurassic Daebo granites and G603, G633, G655 are the Cretaceous granites. Therefore, the domestic dimension stones and Chinese similar dimension stones can be clearly determined by the zircon U-Pb age results.

Study for Selection of Replica Stone of the Stele for Buddhist Monk Wonjong at Yeoju Godalsa Temple Site using Magnetic Susceptibility (전암대자율을 이용한 여주 고달사지 원종대사탑비 비신의 복제용 석재 선정 연구)

  • Lee, Myeong Seong;Chun, Yu Gun;Kim, Jiyoung
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.299-310
    • /
    • 2016
  • The Stele for Buddhist Monk Wonjong at Godalsa Temple Site was destroyed a long time ago. Only the tortoise-shaped pedestal and the ornamental capstone in the form of a hornless dragon remain at the site and the broken stele body is stored at the National Museum of Korea today. The stele is made of two kinds of rocks that are coarse-grained biotite granite for the pedestal and the capstone, and fine-grained biotite granite including hornblende assemblages and feldspar phenocrysts for the stele body. The coarse-grained biotite granite of the pedestal and capstone showed same magnetic susceptibility and lithological characteristics with biotite granite outcrops in Yeoju area, whereas the fine-grained granite of the stele body did not. To find a provenance of the stele body stone, we investigated Korean granites in terms of magnetic susceptibility, lithology and old recordings about construction process of the stele. As a result, Haeju granite is the most likely to be a cognate rock of the stele body stone as it has same texture and lithological characteristics like color, hornblende assemblages, mineral composition and magnetic susceptibility. It is imported from Haeju (North Korea) to South Korea via China commercially, and the most suitable for a replica stone of the stele body.

Petrological Study and Provenance Estimation on the Stone Materials used in the Woldae of Gwanghwamun, Korea (광화문 월대 부재에 대한 암석학적 연구 및 석재공급지 추정)

  • Park, Sung Chul;Park, Sang Gu;Kim, Sung Tae;Kim, Jae Hwan;Jwa, Yong-Joo
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.46-55
    • /
    • 2019
  • In this study, we investigated the stone materials used in the Woldae of Kwanghwamun gate to estimate their provenances. The Woldae was partly reconstructed in 2010 using red-colored original stone and greyish new stone. We carried out geological survey in Mt. Bukhan (Bukhansan) and Mt. Surak (Suraksan) to estimate the source of stone, where red-colored granitic rocks are widely distributed. Though the petrographical features of the granitic rocks from the surveyed area are quite similar, there exists a slight variation of magnetic susceptibility and color index of the rocks: the granitic rocks from Mt. Surak have higher value of magnetic susceptibility and clearer reddish feature. A series of evidence, such as historical records, stone cutting traces and petrographical features, for the source of stone materials used in the Woldae tells that Mt. Surak would have been the provenance for the stone materials used in the Woldae. We also conducted a nondestructive test to examine the physical property of the rocks. The original stone shows low compressive strength (147 MPa) due to the weathering, whereas the rock in Mt. Surak has higher compressive strength (244 MPa) capable of being used as building materials. If there were any difficulties to use the granitic rocks in Mt. Surak, some granitic rocks that have similar petrological characteristics, such as Changsu stone and Yeongjung stone from the Pocheon area, could be used as building material instead.

A Study on the Provenance of the Stones and the Surface Cracks in the Suljeongri East Three-story Stone Pagoda, Changnyeong, Korea (창녕 술정리 동삼층석탑 석재의 원산지 해석 및 표면균열에 관한 연구)

  • Kim, Jae-Hwan;Jwa, Yong-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.283-292
    • /
    • 2010
  • The Suljeongri east three-story stone pagoda in Changnyeong (National Treasure No. 34) has been damaged mainly by lots of cracks. The stones used for this pagoda are medium-granied equigranular pinkish biotite granite. Measured magnetic susceptibility values are of from 2 to 9 (${\times}10^{-3}$ SI unit). From the ${\gamma}$-ray spectrometer mesurement K, eU, and eTh contents of the stones are 3 to 7%, 8 to 19 ppm, and 11 to 35 ppm, respectively. Comparing the petrographical and chemical characteristics between the stones of the pagoda and the country rocks near Suljeongri, it is suggested that the most similar rock could be equigranular biotite granite in the western slope of the Mt. Hwawangsan. Vertical, horizontal and diagonal cracks are intensely developed at the lower part of the stone pagoda. Biotite granite has intrinsic microcracks defined as rift and grain rock cleavages. Both rock cleavages are assumed to have led to the crack growth and consequent mechanical damage of the pagoda. It seems that vertical cracks have been grown parallel to the principal compressional stress, and that horizontal cracks to the reacting tensional stress. Diagonal cracks seems likely to have been resulted from conjugate rift and grain rock cleavages.

Source rock investigation for the Gyeongju Seated Stone Buddha with Square Pedestals in the Blue House using nondestructive petrological analysis (청와대 소재 경주 방형대좌 석조여래좌상의 암석학적 비파괴분석을 통한 산지해석)

  • Lee, Myeong Seong;Yoo, Ji Hyun;Kim, Jiyoung
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.567-578
    • /
    • 2018
  • A nondestructive petrological investigation was carried out to identify the original location and form of the Gyeongju Seated Stone Buddha with Square Pedestals in the Blue House (so-called Stone Buddha in the Blue House). The Statue is a representative stone Buddha statue of Silla (9th century) but its original location is controversial and some parts were missing. Based on the petrological observation, magnetic susceptibility and gamma spectrometry, its stone material was identified as medium-grained alkali feldspar granite. This kind of granites are widely found in the Namsan, Gyeongju. It is very likely that the Namsan granites are the source of rock of the Stone Buddha. The Yudeoksa (Igeosaji temple site) and Namsan are possible to be the original home of the Buddha Statue since there are petrologically identical alkali feldspar granite outcrop distributed in Namsan and stone heritage made of the same stone type in both places. An investigation on the square middle stone base in the Chuncheon National Museum reveals that it is less likely to be the missing part of the Buddha statue as the stone base is fine- to medium-grained pink feldspar granite and has different magnetic susceptibility from the Buddha statue. This study confirmed the contribution and significance of petrological investigation to identification of stone heritage in Korea.

The Scientific Analysis of the roofing tiles excavated at Gyeong Bok Gung (경복궁 출토 기와의 자연과학적 조사 연구 - 소주방지, 흥복전지, 함화당지, 집경당지 출토 -)

  • Hong, Jong-Ouk;Park, Ji-Jee;Lee, Han-Hyeong
    • 보존과학연구
    • /
    • s.29
    • /
    • pp.221-238
    • /
    • 2008
  • Roofing tiles are very important archaeological artifacts which show science, architecture of that time, as well as information about the culture. It has been studied by many researchers steadily, but only focusing on archaeological, art historical and architectural study, so it is very difficult to find natural science research. Gyeongbokgung's roofing tiles were excavated from the ruins of same site, however glaze, body colour and shape of tiles are very diverse with the naked eye. Through natural science research which analyze the chemical composition and physical characteristics of roofing tiles's body and glaze examine the physical and chemical characteristics of each roofing tiles. the result of analazed roofing tiles is following. when roofing tiles were classified by 전암대자율 and chromaticity, each group has part of some matches. When you compare with green gazed traditional brick's glaze of Silla period, Gyeongbokgung roofing tiles have more $Al_2O_3$ and less PbO than Silla period's. We can see the technology of increasing firing temperature is better. and glaze colour depends on content of $Fe_2O_3$ and CuO. A lot of CuO tend to be more blue.

  • PDF

Petrological study and Provenance estimation on the stone materials from the Jeolla Usuyeong Rampart, the Republic of Korea (전라우수영 성곽 부재에 대한 암석학적 연구 및 산지추정)

  • Park, Sang Gu;Kim, Sung Tae;Kim, Jun Hyeok;Kim, Seon Hyang;Baek, Ye ram;Kim, Jae Hwan;Jwa, Yong-Joo
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.250-259
    • /
    • 2018
  • We investigated the petrological features of the stone materials used in the Jeolla Usuyeong rampart and estimated their provenance through the geological survey. The Jeolla Usuyeong was designated as a historic site (No. 535) on 2016. Since the remaining rampart is less than 15%, it is necessary to make conservation on it. In this study, we discriminated the stone materials used for the rampart according to their petrographic characteristics and estimated the volume proportion of each stone by the rock type. Also, we measured the whole-rock magnetic susceptibility. The petrographic features of the stones in the rampart were compared with those in the vicinity by their mineral composition and texture. The stone materials of the rampart mainly consist of the tuff, lapilli tuff, and lapilli stone. Among these three kinds of rocks, lapilli tuff is quantitatively the most abundant (60.3%), the next is tuff (34.7%), and lapilli stone (2.5%) shows the least amount. The whole-rock magnetic susceptibility of the tuffaceous rocks can be divided by the value of $1.0{\times}10^{-3}$ SI unit. Also, the compressive strength of tuff exhibits about 156 MPa, which is adequate to reuse for the repairing work. Petrological comparisons between stone materials and outcrop rocks distributed around the Hwawon peninsula leads to a conclusion that the stone materials of the rampart are likely to have been delivered from the Dongoeri and Sindeok-ri. Judging from the results of the comparison on the frequency of use and physical properties among the tuffaceous rocks, tuff is considered to suitable for restoring the rampart.

Investigation of Provenance and Characteristics for Rock Properties to the South Gate Wall of Myeoncheoneupseong Town Wall in Dangjin, Korea (당진 면천읍성 남문지 축성암석의 특성과 산지 연구)

  • Jin, Hong Ju;Kim, Ran Hee;Yoon, Jung Hun;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.189-203
    • /
    • 2014
  • In this study, the identification and distribution for rock types of the South Gate Wall of Myeoncheoneupseong Town Wall in Dangjin was investigated, and the homogeneity analysis of rock properties in the wall between the surrounding out crops estimated by examining the possible provenances. The Town Wall consists of variable rock types about 15 kinds. Granitic rocks (61.0%), quartzite (21.0%) and quartz feldspar porphyry (8.7%) accounted over 90% of total survey section. These rock properties are very similar to surrounding rocks of the Town Wall on the basis of occurrences, magnetic susceptibility, petrography, mineralogical and goechemical characteristics. Thus, it is probable that the rock properties of the Town Wall were supplied from the Town Wall around about 8km within at Seongsangri, Yangyuri, Seongbukri, Galsanri and Daedeokdong area. And supplied rock properties in the construction process, easy procurement rather than rock type was most likely seems to be considered.

Material Analysis and Provenance Interpretation for Rock Properties of the Gwangjueupseong (Gwangju Town Wall), Korea (광주읍성 축성암석의 재질분석과 산지해석)

  • Lee, Myeong-Seong;Chun, Yu-Gun;Seo, Jeong-Seog;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.61-76
    • /
    • 2009
  • Gwangjueupseong (Gwangju Town Wall) has been found in the site of the Asian Culture Complex (former Provincial Government of Jeonnam) by archaeological field survey. The length of the remaining wall is 85.1m, and the Town Wall consists of ten kinds of rock type. The major rock types are dacite (41.1%) and andesite (35.7%). Dacite composes main rock blocks of the wall, and andesite is used to fill the cavity between main rock blocks. These rocks look very similar to basement rocks of the Mudeung Mountain on the basis of occurrence features, magnetic susceptibility, petrological, mineralogical and geochemical properties. Also, quarrying traces were found on the southwestern slope of the mountain along the Jeungsimsa Temple valley. Thus, it is probable that the rock materials of the Gwangju Town Wall were supplied from the Mudeung Mountain and that they were transported along the Gwangju river.

  • PDF

A Scientific Study of Roof Tiles in Joseon Dynasty from Dongdaemoon Stadium (동대문운동장유적 출토 조선시대 기와의 특성 연구)

  • Chung, Kwang-Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.3
    • /
    • pp.160-173
    • /
    • 2012
  • Roofing tile research conducted in Korea so far is mostly related to studies on roofing tile patterns excavation report on the roof tile klin site in the aspects of archeology architecture and history of art. There have been continuous studies on kiln ground and manufacture techniques of roofing tiles. However it is difficult to find roofing tiles research based on scientific experiments. The research on this paper performs physical and chemical experimental study to understand order, manufacturing techniques and other characteristics of Chosun Dynasty roofing tiles excavated in Dongdaemun stadium. As for physical experimental study water absorption, specific gravity, whole-rock Magnetic susceptibility rate and Differential Thermal Analysis are conducted. As for chemical experimental study, neutron activation analysis(NAA), microstructure observation, X-ray diffractometry(XRD) analysis are conducted. Result of neutron activation analysis and statistical analysis on piece of roof tile 22 samples clearly show that the roofing tile samples are from different time line and places. It also shows different composition when compare average value of rare earth resources per findspots. It means roofing tiles were manufactured from clay mineral from several places. Close inspection using XRD and polarization microscope reveals that main components of roofing tiles are quartz and felspar. Mica and Illite are found partially. XRD analysis shows mullite mineral composition which occurs when roofing tile is calcined around $1000^{\circ}C$. Differential thermal analysis shows gradual exothermic peak near $900^{\circ}C$. Based on these results, it is assumed that roofing tile is made at $900{\sim}1000^{\circ}C$. result of XRD analysis shows mullite were made near $1000^{\circ}C$. in Differential Thermal Analysis shows gradual exothermic peak near $900^{\circ}C$. this results shows that roof tiles were made near 900~1000 near $1000^{\circ}C$ mean value of whole-rock Magnetic susceptibility rate. When performed comparative analysis using whole-rock Magnetic susceptibility rate average value, findspots provided no certain classification to arrange. Nonetheless low whole-rock Magnetic susceptibility rate 0.2~0.78(${\times}103$ SI unit) is found when roofing tile patterns are Pasangmun, Taesangmun, Eosangmun, Kyukjamun, Heongsunmun. Overall absorptivity is 14~21%. It is similar to 14~18% of roofing tile from Chosun Dynasty. There is only 1.4~2.5g/cm3 of roof tile sample specific gravity. The analysis finds no difference in specific gravity by findspots.