• Title/Summary/Keyword: 전산화치료계획

Search Result 181, Processing Time 0.023 seconds

A comprehensive comparison of IMRT and VMAT plan quality for orbital lymphoma (안와 림프종 환자의 방사선치료를 위한 세기조절방사선치료와 용적세기조절회전치료의 전산화 치료계획에 대한 고찰)

  • Yoo, Soon Mi;Ban, Tae Joon;Yun, In Ha;Baek, Geum Mun;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.281-287
    • /
    • 2014
  • Purpose : The purpose of this study is to compare the plan quality of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) for the treatment of orbital lymphoma. IMRT, partial single arc(SA) and partial-double arc(DA) VMAT plans for four patients with orbital lymphoma treated at our institution were used for this study. Conformity Index(CI), Paddick's Conformity Index(PCI) and Homogeneity Index(HI) of planning target volume(PTV) were used to evaluate dosimetric quality of each plan. The Monitor Unit (MU), treatment time and dose of ipsilateral lens from each type of plan were measured for comparison. Materials and Methods : The CI of PTV for IMRT, SA and DA were measured as 0.88, 0.86, 0.92. The PCI of DA was the lowest as 1.33. Also HI of DA was the lowest in measured plans as 1.15. Mean dose of lens, lacrimal gland, optic chiasm, the opposite optic nerve and both orbit was analyzed with V30, V20, V10, V5. The result showed that the lowest dose in IMRT highest in SA in opposite lens, lacrimal gland, optic nerve, orbit. Results : Treatment time and average MU of IMRT was about three times higher than SA. Conclusion : Considering the superior plan quality as well as the delivery efficiency of VMAT compared with that of IMRT, VMAT may be the preferred modality for treating orbital lymphoma.

Clinical Implementation of a Virtual-Micro MLC for Smoothing MLC Field Edge (다엽콜리메이터에 의한 조사경계면에서의 요동현상을 완화시켜주는 가상미세다엽콜리메이터의 임상 적용)

  • Cho Byung-Chul;Park Hee-Chul;Bae Hoonsik
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.167-172
    • /
    • 2004
  • A Siemens HD-270 MLC$^{TM}$, a virtual-micro MLC, allows to the application of a smooth field edge method due to the finite leaf-width of MLC. This technique was implemented into a Pinnacle planning system in order to evaluate the dose distributions during the planning stage. The necessary dosimetric aspects, such as undulation and effective penumbra, were investigated with variations in the resolutions of a virtual-micro MLC and field edge angle. The positional accuracy of the couch movement was also assessed for clinical implementation. The overhead time for planning and treatment was confirmed as negligible.e.

  • PDF

The dosimetric impact on treatment planning of the Dynamic MLC leaf gap (동적 다엽콜리메이터의 Leaf gap이 전산화 치료계획에 미치는 영향)

  • Kim, Chong Mi;Yun, In Ha;Hong, Dong Gi;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.233-238
    • /
    • 2014
  • Purpose : The Varian's Eclipse radiation treatment planning system is able to correct radiation treatment thought leaf gap which is limitation MLC movement for collision with both MLC. In this study, I'm try to analyze dosimetric effect about the leaf gap in treatment planning system. And then apply to clinical implement. Materials and Methods : The Elclipse version is 10.0. In general, the leaf gap set to 0.05~0.3 mm and must measurement each leaf gap. The leaf gap measured by each LINACs and photons. We applied to measured each leaf gap in IMRT and VMAT. Changing the leaf gap, we evaluated treatment plans by Dmax, CI, etc. Results : When the same plan was evaluated with changing the leaf gap, an increase of 2-5% over the value Dmax, CI increases mm to 0.0~0.50 mm leaf gap. Volumetric modulated and intensity modulated radiation therapy plans all showed the same trend was not found significant between each radiation treatment planning. Conclusion : Generally, the leaf gap setting has a unique measure of the Multileaf collimator. However, the aging of the Multileaf collimator, calibration, and can be changed, after inspection and repair of the lip gap should eventually because these values affect the treatment plan must be applied to the treatment after confirmation. In some cases, may be to maintain the initial setting value of the lip gap, which is undesirable because it can override the influence on the treatment plan.

The evaluation of the feasibility about prostate SBRT by analyzing interfraction errors of internal organs (분할치료간(Interfraction) 내부 장기 움직임 오류 분석을 통한 전립선암의 전신정위적방사선치료(SBRT) 가능성 평가)

  • Hong, soon gi;Son, sang joon;Moon, joon gi;Kim, bo kyum;Lee, je hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.179-186
    • /
    • 2016
  • Purpose : To figure out if the treatment plan for rectum, bladder and prostate that have a lot of interfraction errors satisfies dosimetric limits without adaptive plan by analyzing MR image. Materials and Methods : This study was based on 5 prostate cancer patients who had IMRT(total dose: 70Gy) Using ViewRay MRIdian System(ViewRay, ViewRay Inc., Cleveland, OH, USA) The treatment plans were made on the same CT images to compare with the plan quality according to adaptive plan, and the Eclipse(Ver 10.0.42, Varian, USA) was used. After registrate the 5 treatment MR images to the CT images for treatment plan to analyze the interfraction changes of organ, we measured the dose volume histogram and the changes of the absolute volume for each organ by appling the first treatment plan to each image. Over 5 fractions, the total dose for PTV was $V_{36.25}$ Gy $${\geq_-}$$ 95%. To confirm that the prescription dose satisfies the SBRT dose limit for prostate, we measured $V_{100%}$, $V_{95%}$, $V_{90%}$ for CTV and $V_{100%}$, $V_{90%}$, $V_{80%}$ $V_{50%}$ of rectum and bladder. Results : All dose average value of CTV, rectum and bladder satisfied dose limit, but there was a case that exceeded dose limit more than one after analyzing the each image of treatment. After measuring the changes of absolute volume comparing the MR image of the first treatment plan with the one of the interfraction treatment, the difference values were maximum 1.72 times at rectum and maximum 2.0 times at bladder. In case of rectum, the expected values were planned under the dose limit, on average, $V_{100%}=0.32%$, $V_{90%}=3.33%$, $V_{80%}=7.71%$, $V_{50%}=23.55%$ in the first treatment plan. In case of rectum, the average of absolute volume in first plan was 117.9 cc. However, the average of really treated volume was 79.2 cc. In case of CTV, the 100% prescription dose area didn't satisfy even though the margin for PTV was 5 mm because of the variation of rectal and bladder volume. Conclusion : There was no case that the value from average of five fractions is over the dosimetric limits. However, dosimetric errors of rectum and bladder in each fraction was significant. Therefore, the precise delivery is needed in case of prostate SBRT. The real-time tracking and adaptive plan is necessary to meet the precision delivery.

  • PDF

CT and MRI Image Fusion Reproducibility and Dose Assessment on Treatment Planning System (치료계획시스템에서 전산화단층촬영과 자기공명영상의 영상융합 재현성 및 선량평가)

  • Choi, Jae-Hyock;Park, Cheol-Soo;Seo, Jeong-Min;Cho, Jae-Hwan;Choi, Cheon-Woong
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.191-196
    • /
    • 2014
  • The purpose of this study is to evaluate the reproducibility and usefulness of an image through the fusion of the computed tomography image and the magnetic resonance image by using a self-produced phantom when planning the treatment, and also to compare and analyze the target dose on the acquired image. The size of small hole and the reproducibility of capacity existed in the phantom on the image of the phantom obtained by the computed tomography and the magnetic resonance image of the phantom scanning with different intensity of magnetic field are compared, and the change of dose in the random target is compared and analyzed.

A study of the plan dosimetic evaluation on the rectal cancer treatment (직장암 치료 시 치료계획에 따른 선량평가 연구)

  • Jeong, Hyun Hak;An, Beom Seok;Kim, Dae Il;Lee, Yang Hoon;Lee, Je hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.171-178
    • /
    • 2016
  • Purpose : In order to minimize the dose of femoral head as an appropriate treatment plan for rectal cancer radiation therapy, we compare and evaluate the usefulness of 3-field 3D conformal radiation therapy(below 3fCRT), which is a universal treatment method, and 5-field 3D conformal radiation therapy(below 5fCRT), and Volumetric Modulated Arc Therapy (VMAT). Materials and Methods : The 10 cases of rectal cancer that treated with 21EX were enrolled. Those cases were planned by Eclipse(Ver. 10.0.42, Varian, USA), PRO3(Progressive Resolution Optimizer 10.0.28) and AAA(Anisotropic Analytic Algorithm Ver. 10.0.28). 3fCRT and 5fCRT plan has $0^{\circ}$, $270^{\circ}$, $90^{\circ}$ and $0^{\circ}$, $95^{\circ}$, $45^{\circ}$, $315^{\circ}$, $265^{\circ}$ gantry angle, respectively. VMAT plan parameters consisted of 15MV coplanar $360^{\circ}$ 1 arac. Treatment prescription was employed delivering 54Gy to recum in 30 fractions. To minimize the dose difference that shows up randomly on optimizing, VMAT plans were optimized and calculated twice, and normalized to the target V100%=95%. The indexes of evaluation are D of Both femoral head and aceta fossa, total MU, H.I.(Homogeneity index) and C.I.(Conformity index) of the PTV. All VMAT plans were verified by gamma test with portal dosimetry using EPID. Results : D of Rt. femoral head was 53.08 Gy, 50.27 Gy, and 30.92 Gy, respectively, in the order of 3fCRT, 5fCRT, and VMAT treatment plan. Likewise, Lt. Femoral head showed average 53.68 Gy, 51.01 Gy and 29.23 Gy in the same order. D of Rt. aceta fossa was 54.86 Gy, 52.40 Gy, 30.37 Gy, respectively, in the order of 3fCRT, 5fCRT, and VMAT treatment plan. Likewise, Lt. Femoral head showed average 53.68 Gy, 51.01 Gy and 29.23 Gy in the same order. The maximum dose of both femoral head and aceta fossa was higher in the order of 3fCRT, 5fCRT, and VMAT treatment plan. C.I. showed the lowest VMAT treatment plan with an average of 1.64, 1.48, and 0.99 in the order of 3fCRT, 5fCRT, and VMAT treatment plan. There was no significant difference on H.I. of the PTV among three plans. Total MU showed that the VMAT treatment plan used 124.4MU and 299MU more than the 3fCRT and 5fCRT treatment plan, respectively. IMRT verification gamma test results for the VMAT plan passed over 90.0% at 2mm/2%. Conclusion : In rectal cancer treatment, the VMAT plan was shown to be advantageous in most of the evaluation indexes compared to the 3D plan, and the dose of the femoral head was greatly reduced. However, because of practical limitations there may be a case where it is difficult to select a VMAT treatment plan. 5fCRT has the advantage of reducing the dose of the femoral head as compared to the existing 3fCRT, without regard to additional problems. Therefore, not only would it extend survival time but the quality of life in general, if hospitals improved radiation therapy efficiency by selecting the treatment plan in accordance with the hospital's situation.

  • PDF

Development of Video Image-Guided Setup (VIGS) System for Tomotherapy: Preliminary Study (단층치료용 비디오 영상기반 셋업 장치의 개발: 예비연구)

  • Kim, Jin Sung;Ju, Sang Gyu;Hong, Chae Seon;Jeong, Jaewon;Son, Kihong;Shin, Jung Suk;Shin, Eunheak;Ahn, Sung Hwan;Han, Youngyih;Choi, Doo Ho
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • At present, megavoltage computed tomography (MVCT) is the only method used to correct the position of tomotherapy patients. MVCT produces extra radiation, in addition to the radiation used for treatment, and repositioning also takes up much of the total treatment time. To address these issues, we suggest the use of a video image-guided setup (VIGS) system for correcting the position of tomotherapy patients. We developed an in-house program to correct the exact position of patients using two orthogonal images obtained from two video cameras installed at $90^{\circ}$ and fastened inside the tomotherapy gantry. The system is programmed to make automatic registration possible with the use of edge detection of the user-defined region of interest (ROI). A head-and-neck patient is then simulated using a humanoid phantom. After taking the computed tomography (CT) image, tomotherapy planning is performed. To mimic a clinical treatment course, we used an immobilization device to position the phantom on the tomotherapy couch and, using MVCT, corrected its position to match the one captured when the treatment was planned. Video images of the corrected position were used as reference images for the VIGS system. First, the position was repeatedly corrected 10 times using MVCT, and based on the saved reference video image, the patient position was then corrected 10 times using the VIGS method. Thereafter, the results of the two correction methods were compared. The results demonstrated that patient positioning using a video-imaging method ($41.7{\pm}11.2$ seconds) significantly reduces the overall time of the MVCT method ($420{\pm}6$ seconds) (p<0.05). However, there was no meaningful difference in accuracy between the two methods (x=0.11 mm, y=0.27 mm, z=0.58 mm, p>0.05). Because VIGS provides a more accurate result and reduces the required time, compared with the MVCT method, it is expected to manage the overall tomotherapy treatment process more efficiently.

Comparison of using CBCT with CT Simulator for Radiation dose of Treatment Planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Kim, Dae-Young;Choi, Ji-Won;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.742-749
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

A Study on Usefulness of Clinical Application of Metal Artifact Reduction Algorithm in Radiotherapy (방사선치료 시 Metal artifact reduction Algorithm의 임상적용 유용성평가)

  • Park, Ja Ram;Kim, Min Su;Kim, Jeong Mi;Chung, Hyeon Suk;Lee, Chung Hwan;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Purpose: The tissue description and electron density indicated by the Computed Tomography(CT) number (also known as Hounsfield Unit) in radiotherapy are important in ensuring the accuracy of CT-based computerized radiotherapy planning. The internal metal implants, however, not only reduce the accuracy of CT number but also introduce uncertainty into tissue description, leading to development of many clinical algorithms for reducing metal artifacts. The purpose of this study was, therefore, to investigate the accuracy and the clinical applicability by analyzing date from SMART MAR (GE) used in our institution. Methode: and material: For assessment of images, the original images were obtained after forming ROIs with identical volumes by using CIRS ED phantom and inserting rods of six tissues and then non-SMART MAR and SMART MAR images were obtained and compared in terms of CT number and SD value. For determination of the difference in dose by the changes in CT number due to metal artifacts, the original images were obtained by forming PTV at two sites of CIRS ED phantom CT images with Computerized Treatment Planning (CTP system), the identical treatment plans were established for non-SMART MAR and SMART MAR images by obtaining unilateral and bilateral titanium insertion images, and mean doses, Homogeneity Index(HI), and Conformity Index(CI) for both PTVs were compared. The absorbed doses at both sites were measured by calculating the dose conversion constant (cCy/nC) from ylinder acrylic phantom, 0.125cc ionchamber, and electrometer and obtaining non-SMART MAR and SMART MAR images from images resulting from insertions of unilateral and bilateral titanium rods, and compared with point doses from CTP. Result: The results of image assessment showed that the CT number of SMART MAR images compared to those of non-SMART MAR images were more close to those of original images, and the SD decreased more in SMART compared to non-SMART ones. The results of dose determinations showed that the mean doses, HI and CI of non-SMART MAR images compared to those of SMART MAR images were more close to those of original images, however the differences did not reach statistical significance. The results of absorbed dose measurement showed that the difference between actual absorbed dose and point dose on CTP in absorbed dose were 2.69 and 3.63 % in non-SMRT MAR images, however decreased to 0.56 and 0.68 %, respectively in SMART MAR images. Conclusion: The application of SMART MAR in CT images from patients with metal implants improved quality of images, being demonstrated by improvement in accuracy of CT number and decrease in SD, therefore it is considered that this method is useful in dose calculation and forming contour between tumor and normal tissues.

  • PDF