• Title/Summary/Keyword: 전산화단층촬영 영상

Search Result 505, Processing Time 0.026 seconds

Evaluation of the Lens Absorbed Dose of MVCT and kV-CBCT Use for IMRT to the Nasopharyngeal Cancer Patient (비인두암 환자에 대한 세기조절 방사선치료 시 이용되는 MVCT와 kV-CBCT의 수정체 흡수선량 평가)

  • Choi, Jae Won;Kim, Cheol Chong;Park, Su Yeon;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.131-136
    • /
    • 2013
  • Purpose: Quantitative comparative evaluation of the difference in eye lens absorbed dose when measured by MVCT and kV-CBCT, though such a dose was not included in the original IMRT treatment plan for the nasopharyngeal cancer patient. Materials and Methods: We used CT (Lightspeed Ultra 16, General Electric, USA) against an Anderson rando phantom (Alderson Research Laboratories Inc, USA) and established the plan for tomotherapy treatment (Tomotherapy, Inc, USA) and linear accelerator treatment (Pinnacle 8.0, Philips Medicle System) for the achieved CT images on the same condition with the nasopharyngeal cancer patient treatment plan. Then, align the ther-moluminescence dosimeter (TLD100 Harshaw, USA) with the eye lens, shot the lens with Tomotherapy MVCT under 3 conditions (Fine, Normal, and Coarse), and shot both lenses with kV-CBCT under 2 conditions (Low Dose Head and Standard Dose Head) 3 times each. Results: When we analyzed the eye lens absorbed dose according to MVCT and kV-CBCT images by using both Tomotherapy and Pinacle 8.0, we achieved the following result; According to Tomotherapy MVCT, RT 0.8257 cGy in the Coarse mode, LT 0.8137 cGy, RT 1.089 cGy and LT 1.188 cGy in the Normal mode, and RT 2.154 cGy and LT 2.082 cGy in the Fine mode. According to Pinacle 8.0 kV-CBCT, RT 0.2875 cGy and LT 0.1676 cGy in the Standard Dose mode and RT 0.1648 cGy and LT 0.1212 cGy in the Low-Dose mode. In short, the MVCT result was significantly different from that of kV-CBCT, up to 20 times. Conclusion: We think kV-CBCT is more effective for reducing the amount of radiation which a patient is receiving during intensity modulated radiation treatment for other purposes than treatment than MVCT, when we consider the absorbed dose only from the viewpoint of image-guided radiation therapy. Besides, we understood the amount of radiation is too sensitive to the shooting condition, even when we use the same equipment.

  • PDF

Differentiation of Parkinson's Disease and Essential Tremor on I-123 IPT(I-123-N-(3-iodopropen-2-yl)-$2{\beta}$-carbomethoxy- $3{\beta}$-(4-cholorophenyl) tropane) Brain SPECT (파킨슨병과 본태성 진전의 감별진단에서 I-123 IPT(I-123-N-(3-iodopropen-2-yl)-$2{\beta}$-carbomethoxy-$3{\beta}$-(4-cholorophenyl) tropane) 뇌 단일광전자방출 전산화단층촬영의 역할)

  • Pai, Moon-Sun;Choi, Tae-Hyun;Ahn, Sung-Min;Choi, Jai-Yong;Ryu, Won-Gee;Lee, Jae-Hoon;Ryu, Young-Hoon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.2
    • /
    • pp.100-106
    • /
    • 2009
  • Purpose: The study was to assess I-123-N-(3-iodopropen-2-yl)-2[beta]-carbomethoxy-3[beta]-(4-cholorophenyl) tropane(IPT) SPECT in differential diagnosis among early stage of Parkinson's disease(PD) and essential tremor(ET) and normal control(NL) groups quantitatively. Materials and Methods: I-123 IPT brain SPECT of 50 NL, 20 early PD, 30 advanced PD, and 20 ET were performed at 20 minutes and 2 hours. Specific/nonspecific binding of striatum was calculated by using right and left striatal specific to occipital non-specific uptake ratio(striatum-OCC/OCC). Results: Mean value of specific/nonspecific binding ratio was significantly different between advanced PD group and NL group. However, significant overlap of striatal specific/nonspecific binding ratio was observed between PD group and ET group. Bilateral striatal specific/nonspecific binding ratios were decreased in advanced PD. Lateralized differences in the striatal uptake of I-123 IPT correlated with asymmetry in clinical findings in PD group. Conclusion: I-123 IPT SPECT may be a useful method for the diagnosis of PD and objective evaluation of progress of clinical stages. Care should be made in the differential diagnosis of early stage of PD and other motor disturbances mimicking PD such as ET in view of significant overlap in striatal I-123 specific/nonspecific binding ratio.

A study on sagittal root position of maxillary anterior teeth in Korean (한국인에서 상악 전치의 시상 치근 위치에 대한 연구)

  • Kong, Hyun-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Purpose: The purpose of this study was to analyze the sagittal root position of maxillary anterior teeth and report the frequency of each classification in Korean for immediate implant placement. Materials and Methods: A retrospective review of cone-beam computed tomography (cone-beam CT) images was conducted on 120 patients (60 male and 60 female) who fulfilled the inclusion criteria. After reorientation of the axis, cone-beam CT images were evaluated and the relationship of the sagittal root position (SRP) of the maxillary anterior teeth to its associated osseous housing was recorded. Class I, II, and III were classified respectively when the root was positioned on the labial, central, and palatal aspect of the alveolar bone. Class IV was the position that at least two thirds of the root is engaging both the labial and palatal cortical plates. Then, the angulation of the root axis and the alveolar bone axis was measured. Descriptive statistics and Kruskal-Wallis test were used to compare the angulation according to the root position and SRP class. Results: The frequency distribution of sagittal root position of maxillary anterior teeth indicated that 81.1%, 10.3%, 1.9%, and 6.7% were classified as Class I, II, III, and IV, respectively. The sagittal angulation at approximately 77.5% of central incisor, lateral incisor, and canine was < 20 degrees, but the angle at more than 42.7% of canine was ≥ 20 degrees. Within the class, the angulation was statistically significantly greater in Class I (16.19) compared to Class II (8.72) and Class III (9.93), and smaller in Class IV (3.79). Conclusion: Within the limitation of this study, a majority of the maxillary anterior roots were positioned close to the buccal cortical plate. However, some roots have very thin alveolar bone and sagittal angulation larger than 30 degrees. Therefore, cone-beam CT analyses of the sagittal root position and the sagittal angulation are recommended for the selection of the appropriate dental implant treatment approach.

Relationship between inter-condylar width and inter-maxillary first molar width (과두간 폭경과 상악 제1대구치간 폭경 사이의 관계)

  • Oh, Sang-Chun;Kong, Hyun-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.4
    • /
    • pp.214-219
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate the correlation between inter-condylar width and inter-maxillary first molar width to present the criteria for prosthetic reconstruction of dental arch width in maxillary and mandibular fully edentulous patients. Materials and Methods: 120 Koreans (60 males and 60 females) who underwent the cone beam computerized tomography (Cone-beam CT) were selected. The Cone-beam CT images were analysed using Invivo 5.1. After reorientation of axis, inter-maxillary first molar width was measured by clicking both mesio-buccal cusp tip of maxillary first molar. And inter-condylar width was measured by clicking both middle points of condyles. The collected data were analysed with SPSS Version 20.0 and statistical significance of the correlation between inter-condylar width and inter-maxillary first molar width was verified by Pearson's correlation analysis. Results: The mean inter-condylar width of Korean was 105.9 mm, and that of male (108.3 mm) was statistically significantly wider than the female (103.4 mm). The inter-maxillary first molar width of Korean was 57.1 mm, and that of male (57.9 mm) was statistically significantly wider than the female (56.2 mm). Pearson's correlation analysis between inter-condylar width and inter-maxillary first molar width showed a Pearson correlation coefficient of 0.614 and statistically significantly positive correlation. Conclusion: Intercondylar width and inter-maxillary first molar width showed positive correlation and the average ratio of inter-condylar with and inter-maxillary first molar width was 1:0.54. Based on the results of this limited study, inter-condylar width can be used as a guide for setting up dental arch width in fully edentulous patient.

USABILITY EVALUATION OF PLANNING MRI ACQUISITION WHEN CT/MRI FUSION OF COMPUTERIZED TREATMENT PLAN (전산화 치료계획의 CT/MRI 영상 융합 시 PLANNING MRI영상 획득의 유용성 평가)

  • Park, Do-Geun;Choe, Byeong-Gi;Kim, Jin-Man;Lee, Dong-Hun;Song, Gi-Won;Park, Yeong-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.127-135
    • /
    • 2014
  • Purpose : By taking advantage of each imaging modality, the use of fused CT/MRI image has increased in prostate cancer radiation therapy. However, fusion uncertainty may cause partial target miss or normal organ overdose. In order to complement such limitation, our hospital acquired MRI image (Planning MRI) by setting up patients with the same fixing tool and posture as CT simulation. This study aims to evaluate the usefulness of the Planning MRI through comparing and analyzing the diagnostic MRI image and Planning MRI image. Materials and Methods : This study targeted 10 patients who had been diagnosed with prostate cancer and prescribed nonhormone and definitive RT 70 Gy/28 fx from August 2011 to July 2013. Each patient had both CT and MRI simulations. The MRI images were acquired within one half hour after the CT simulation. The acquired CT/MRI images were fused primarily based on bony structure matching. This study measured the volume of prostate in the images of Planning MRI and diagnostic MRI. The diameters at the craniocaudal, anteroposterior and left-to-right directions from the center of prostate were measured in order to compare changes in the shape of prostate. Results : As a result of comparing the volume of prostate in the images of Planning MRI and diagnostic MRI, they were found to be $25.01cm^3$(range $15.84-34.75cm^3$) and $25.05cm^3$(range $15.28-35.88cm^3$) on average respectively. The diagnostic MRI had an increase of 0.12 % as compared with the Planning MRI. On the planning MRI, there was an increase in the volume by $7.46cm^3$(29 %) at the transition zone directions, and there was a decrease in the volume by $8.52cm^3$(34 %) in the peripheral zone direction. As a result of measuring the diameters at the craniocaudal, anteroposterior and left-to-right directions in the prostate, the Planning MRI was found to have on average 3.82cm, 2.38cm and 4.59cm respectively and the diagnostic MRI was found to have on average 3.37cm, 2.76cm and 4.51cm respectively. All three prostate diameters changed and the change was significant in the Planning MRI. On average, the anteroposterior prostate diameter decrease by 0.38cm(13 %). The mean right-to-left and craniocaudal diameter increased by 0.08cm(1.6 %) and 0.45cm(13 %), respectively. Conclusion : Based on the results of this study, it was found that the total volumes of prostate in the Planning MRI and the diagnostic MRI were not significantly different. However, there was a change in the shape and partial volume of prostate due to the insertion of prostate balloon tube to the rectum. Thus, if the Planning MRI images were used when conducting the fusion of CT/MRI images, it would be possible to include the target in the CTV without a loss as much as the increased volume in the transition zone. Also, it would be possible to reduce the radiation dose delivered to the rectum through separating more clearly the reduction of peripheral zone volume. Therefore, the author of this study believes that acquisition of Planning MRI image should be made to ensure target delineation and localization accuracy.

Evaluation to Obtain the Image According to the Spatial Domain Filtering of Various Convolution Kernels in the Multi-Detector Row Computed Tomography (MDCT에서의 Convolution Kernel 종류에 따른 공간 영역 필터링의 영상 평가)

  • Lee, Hoo-Min;Yoo, Beong-Gyu;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.71-81
    • /
    • 2008
  • Our objective was to evaluate the image of spatial domain filtering as an alternative to additional image reconstruction using different kernels in MDCT. Derived from thin collimated source images were generated using water phantom and abdomen B10(very smooth), B20(smooth), B30(medium smooth), B40 (medium), B50(medium sharp), B60(sharp), B70(very sharp) and B80(ultra sharp) kernels. MTF and spatial resolution measured with various convolution kernels. Quantitative CT attenuation coefficient and noise measurements provided comparable HU(Hounsfield) units in this respect. CT attenuation coefficient(mean HU) values in the water were values in the water were $1.1{\sim}1.8\;HU$, air($-998{\sim}-1000\;HU$) and noise in the water($5.4{\sim}44.8\;HU$), air($3.6{\sim}31.4\;HU$). In the abdominal fat a CT attenuation coefficient($-2.2{\sim}0.8\;HU$) and noise($10.1{\sim}82.4\;HU$) was measured. In the abdominal was CT attenuation coefficient($53.3{\sim}54.3\;HU$) and noise($10.4{\sim}70.7\;HU$) in the muscle and in the liver parenchyma of CT attenuation coefficient($60.4{\sim}62.2\;HU$) and noise ($7.6{\sim}63.8\;HU$) in the liver parenchyma. Image reconstructed with a convolution kernel led to an increase in noise, whereas the results for CT attenuation coefficient were comparable. Image scanned with a high convolution kernel(B80) led to an increase in noise, whereas the results for CT attenuation coefficient were comparable. Image medications of image sharpness and noise eliminate the need for reconstruction using different kernels in the future. Adjusting CT various kernels, which should be adjusted to take into account the kernels of the CT undergoing the examination, may control CT images increase the diagnostic accuracy.

  • PDF

An Efficient Correction Process of CT-Simulator Couch with Current Diagnostic CT Scanners (진단용 CT-모의치료기 테이블의 효율적인 교정 방법)

  • Goo, Eun-Hoe;Lee, Jae-Seung;Cho, Jung-Keun;Moon, Seong-Kwon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.254-261
    • /
    • 2009
  • This study suggested that the table of CT-simulator and the laser alignment system using diagnostic CT scanner have an efficient method for improvement in alignment between the planned target center of traverse image with CT scanner. It was conducted on the daily QA when presented in the AAPM TG66 with correcting the laser alignment system using geometric trigonometric functions and investigated the effectiveness of correction methods as compared with those before and after correction. Before correction error was 3.82mm between the planned target center of image, the table longitudinal axis was twisted with 0.436o. The laser alignment system using geometric trigonometric functions in after correction was satisfied with tolerance limits of ${\pm}2mm$ when occurred about 0.7mm in errors between the planned target center. The table correction to satisfy the geometric accuracy is very inefficient over against the time and economic loss as well as technical limits in the case of application as only radiation therapy associated with CT-simulator with diagnostic CT scanner in use. But, the method which corrects the laser alignment system is economic and relatively simple with possibility of getting well geometric accuracy and we suppose that it is efficient method for applying in the clinic.

Miniscrew Installation Area and Condition on Maxillary Palatal Side (상악구개측 미니스크류 식립위치 및 조건)

  • Lee, Ki-Yeon;Lee, Jin-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.61-71
    • /
    • 2009
  • Anchorage control is important in orthodontic treatment. Recently miniscrew is widly used as maximum anchorage in orthodontic treatment, and then it is important to install miniscrew safely without damaging adjacent anatomic structure. In a view of Miniscrew's stability, maxilla is unfavorable than mandible, and moreover maxillary soft buccal bone has disadvantage on stability. so palatal area comes into notice for installation area. We measured distance between palatal roots and bone thickness at midpalatal area using 3D computed tomography, and have found following results. 1. On the comparison of distance between palatal roots, the distance between 2nd premolar and 1st molar was significantly longest and the distance between premolars was significantly shortest. 2. Going toward lateral area from midpalatal suture and posterior area from zero point, bone thickness significantly became shorter and shorter. And 5.0mm palatal sagittal plane has more significance decrease of bone thickness than 2.5mm palatal sagittal plane. According to these results, we can conclude that the palatal installation of miniscrew between 2nd premolar and 1st molar is safest. And it is more safe that comes closer to midpalatal suture and to anterior area in regard to incisive canal.

Effect of Titanium Prosthesis on Computed Tomography Measurements of Bone Mineral Density

  • Han, S.M.;Zude Feng
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.177-182
    • /
    • 1998
  • This study investigated the effects of a titanium prosthesis, malalignment, field of view, and distal flare of titanium prosthesis on computed tomography( CT) measurements of home mineral density. Eight femora and eight tibiae from fresh male cadavers were used. Fifteen pieces of cancellous bone from the proximal tibiae were milled into rectangular parallelepipeds. Parallelepipeds and femors were scanned with and without titanium prosthesis when centered in the gantry of the CT scanner and malaligned, respectively. Image data were then reconstructed with field of view of 10 and 30 cm. Bone mineral density(BMD) values were obtained from CT images using C-MED software. The effects of titanium prosthesis, malalignmetn, and field of view were investigated. When bone was centered in the gantry of the CT scanner, the mean relative difference of BMD measurements caused by a titanium prosthesis was less than 1% for both cortical and cancellous bone. Field of view had negligible effect on BMD measurements as well. Malalignment and distal flare of prosthesis, however, caused a significant difference in BMD measurements(p<0.0001). The titanium prosthesis did not interfere with malalignment combining the existence of a titnium prosthesis on BMD measurements was significant.

  • PDF

Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images (사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Park, Hee-Chul;Ahn, Jong-Ho;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jin-Sung;Han, Young-Yih;Lim, Do-Hoon;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • Purpose: In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimentional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Materials and Methods: Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Results: Medians of inter-fractional variation for twenty patients were 0.00 cm (range, -0.50 to 0.90 cm), 0.00 cm (range, -2.40 to 1.60 cm), and 0.00 cm (range, -1.10 to 0.50 cm) in the X (transaxial), Y (superior-inferior), and Z (anterior-posterior) directions, respectively. Significant inter-fractional variations over 0.5 cm were observed in four patients. Min addition, the median tidal amplitude differences between 4DCTs and the gated orthogonal setup images were -0.05 cm (range, -0.83 to 0.60 cm), -0.15 cm (range, -2.58 to 1.18 cm), and -0.02 cm (range, -1.37 to 0.59 cm) in the X, Y, and Z directions, respectively. Large differences of over 1 cm were detected in 3 patients in the Y direction, while differences of more than 0.5 but less than 1 cm were observed in 5 patients in Y and Z directions. Median intra-fractional variation was 0.00 cm (range, -0.30 to 0.40 cm), -0.03 cm (range, -1.14 to 0.50 cm), 0.05 cm (range, -0.30 to 0.50 cm) in the X, Y, and Z directions, respectively. Significant intra-fractional variation of over 1 cm was observed in 2 patients in Y direction. Conclusion: Gated setup images provided a clear image quality for the detection of organ motion without a motion artifact. Significant intra- and inter-fractional variation and tidal amplitude differences between 4DCT and gated setup images were detected in some patients during the radiation treatment period, and therefore, should be considered when setting up the target margin. Monitoring of positional uncertainty and its adaptive feedback system can enhance the accuracy of treatments.