• 제목/요약/키워드: 전산화단층촬영 영상

Search Result 505, Processing Time 0.023 seconds

Evaluation of HalcyonTM Fast kV CBCT effectiveness in radiation therapy in cervical cancer patients of childbearing age who performed ovarian transposition (난소전위술을 시행한 가임기 여성의 자궁경부암 방사선치료 시 난소선량 감소를 위한 HalcyonTM Fast kV CBCT의 유용성 평가 : Phantom study)

  • Lee Sung Jae;Shin Chung Hun;Choi So Young;Lee Dong Hyeong;Yoo Soon Mi;Song Heung Gwon;Yoon In Ha
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.73-82
    • /
    • 2022
  • Purpose: The purpose of this study is to evaluate the effectiveness of reducing the absorbed dose to the ovaries and the quality of the CBCT image when using the HalcyonTM Fast kV CBCT of cervical cancer patients of child-bearing age who performed ovarian transposition Materials and Methods : Contouring of the cervix and ovaries required for measurement was performed on the computed tomography images of the human phantom (Alderson Rando Phantom, USA), and three Optically Stimulated Luminescence Dosimeter(OSLD) were attached to the selected organ cross-section, respectively. In order to measure the absorbed dose to the cervix and ovaries in the TruebeamTM pelvis mode (Hereinafter referred to as TP), The HalcyonTM Pelvis mode (Hereinafter referred to as HP) and The HalcyonTM Pelvis Fast mode (Hereinafter referred to as HPF), An image was taken with a scan range of 17.5 cm and also taken an image that reduced the Scan range to 12.5cm. A total of 10 cumulative doses were summed, It was replaced with a value of 23 Fx, the number of cervical cancer treatments, and compared In additon, uniformity, low contrast visibility, spatial resolution, and geometric distortion were compared and analyzed using Catphan 504 phantom to compare CBCT image quality between equipment. Each factor was repeatedly measured three times, and the average value was obtained by analysing with the Doselab (Mobius Medical Systems, LP. Versions: 6.8) program. Results: As a result of measuring absorbed dose by CBCT with OSLD, TP and HP did not obtain significant results under the same conditions. The mode showing the greatest reduction value was HPF versus TP. In HPF, the absorbed dose was reduced by 39.8% in the cervix and 19.8% in the ovary compared to the TP in the scan range of 17.5 cm. the scan range was reduced to 12.5 cm, absorbed dose was reduced by 34.2% in the cervix and 50.5% in the ovary. In addition, result of evaluating the quality of the image used in the above experiment, it complied with the equipment manufacturer's standards with Geometric Distortion within 1mm (SBRT standard), Uniformity HU, LCV within 2.0%, Spatial Resolution more than 3 lp/mm. Conclusion: According to the results of this experiment, HalcyonTM can select more various conditions than TruebeamTM in treatment of fertility woman who have undergone ovarian Transposition , because it is important to reduce the radiation dose by CBCT during radiation therapy. So finally we recommend HalcyonTM Fast kV CBCT which maintains image quality even at low mAs. However, it is consider that the additional exposure to low doses can be reduced by controlling the imaging range for patients who have undergone ovarian transposition in other treatment machines.

Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT (폐암 영상유도방사선 치료 시 CBCT와 4D-CBCT를 이용한 흡수선량 및 유효선량에 관한 선량 평가)

  • Kim, Dae yong;Lee, Woo Suk;Koo, Ki Lae;Kim, Joo Seob;Lee, Sang Hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Purpose : To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. Materials and Methods : This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography) Results : Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv Conclusion : As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  • PDF

Radiographic evaluations of the various lesions of maxillary sinus, inferior wall of sinus and surrounding structures using reformatted computed tomography (영상재구성 전산화 단층촬영을 이용한 상악동과 상악동 아래벽 및 주위구조 질환의 방사선학적 평가)

  • Yoon Hae-Rym;Kim Hee-Jin;Kim Kee-Deog;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.32 no.1
    • /
    • pp.19-25
    • /
    • 2002
  • Purpose: To evaluate the degree of accuracy of DentaScan reformatted images of the maxillary sinus and periapical, periodontal lesions and to clarify the usefulness of the reconstructed 3-dimensional images to the dental clinical aspects. Materials and Methods: 33 sides of maxillae of the hemi-sectioned Korean heads were used in this study. Periapical radiographs, computed tomography and DentaScan reformatted cross-sectional images were taken for the radiographic evaluation of the peiapical and peiodontal lesions of the maxillary teeth and inferior wall of maxillary sinus. Results : Compared the degree of accuracy and findings of dental and periapical pathoses on the intraoral radiographs and DentaScan reformatted images with the cross-sectioned specimens, the DentaScan reformatted cross-sectional images were more accurate and more effective than the intraoral radiography with a viewpoint of the detection of dental and periapical pathoses. Conclusion: Comparing the lesions of specimens with intraoral radiographies and DentaScan reformatted images, the dental and periodontal pathoses and topographical structures were more clearly observed in the DentaScan reformatted images, providing the possibility of more applications of reformatted images to clinical dentistry.

  • PDF

Evaluation of Computed Tomography and Magnetic Resonance Imaging of Sinonasal Inverted Papilloma (비부비동 반전성 유두종의 전산화 단층촬영상과 자기공명영상의 분석)

  • Bai, Chang-Hoon;Seo, Young-Jung;Lee, Seok-Choon;Chen, Seung-Min;Baek, Un-Hoi;Jung, Eun-Chae;Song, Si-Youn;Kim, Yong-Dae
    • Journal of Yeungnam Medical Science
    • /
    • v.22 no.2
    • /
    • pp.191-198
    • /
    • 2005
  • Background: Computed tomography (CT) is commonly used to evaluate the degree of sinus involvement in cases of inverted papilloma (IP). However, CT cannot differentiate tumor from adjacent inflammatory mucosa or retained secretions. By contrast, magnetic resonance imaging (MRI) has been reported to be useful in distinguishing IP from paranasal sinusitis. This study investigated whether preoperative assessment with MRI and CT accurately predict the extent of IP.1) Materials and methods: CT and MRI were retrospectively reviewed in 9 cases of IP. Patients were categorized into stages based on CT and MRI findings, according to the staging system proposed by Krouse. The involvement of IP in each sinus was also assessed. Results: Differentiation of IP from inflammatory disease may be more successful in routine cases where the inflammatory mucosa has low signal intensity on T1-weighted images and very high signal intensity on T2-weighted images. CT imaging could not differentiate tumor from adjacent inflammatory mucosa or retained secretions. Conclusion: Preoperative MRI of IP can predict the location and extent of the tumor involvement in the paranasal sinuses and sometimes predicts malignant changes.

  • PDF

An Experimental Comparative Study of Radiography, Ultrasonography and CT Imaging in the IV Catheter Fragment (정맥내 카테터 조각의 엑스선, 초음파 및 CT 영상의 실험적 비교 연구)

  • Kweon, Dae Cheol
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.185-191
    • /
    • 2016
  • The objective of this study was to detect the fragments generated during IV (intravenous) catheter injection of contrast medium and drug administration in a clinical setting and removal was performed by experimentally producing a phantom, and to compare the radiography, ultrasonography, and multi-detector computed tomography (MDCT) imaging and radiation dose. A 1 cm fragment of an 18 gage Teflon$^{(R)}$ IV catheter with saline was inserted into the IV control line. Radiography, CT, and ultrasonography were performed and radiography and CT dose were calculated. CT and ultrasonography showed an IV catheter fragment clinically and radiography showed no visible difference in the ability to provide a useful image of an IV catheter fragment modality (p >.05). Radiography of effective dose ($0.2139mSv{\cdot}Gy^{-1}{\cdot}cm^{-2}$) form DAP DAP ($0.93{\mu}Gy{\cdot}m^2 $), and dose length product (DLP) ($201mGy{\cdot}cm$) to effective dose was calculated as 0.483 mSv. IV catheter fragment were detected of radiography, ultrasonography and CT. These results can be obtained by menas of an excellent IV catheter fragment of detection capability CT. However, CT is followed by radiation exposure. IV catheter fragment confirming the position and information recommend an ultrasonography.

MTF Evaluation and Clinical Application according to the Characteristic Kernels in the Computed Tomogrsphy (Kernel 특성에 따른 MTF 평가 및 임상적 적용에 관한 연구)

  • Yoo, Beong-Gyu;Lee, Jong-Seok;Kweon, Dae-Cheol
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.55-64
    • /
    • 2007
  • Our objective was to evaluate the clinical feasibility of spatial domain filtering as an alternative to additional image reconstruction using different kernels in CT. Kernels were grouped as H30 (head medium smooth), B30 (body medium smooth), S80 (special) and U95 (ultra sharp). Derived from thin coilimated source images, four sets of images were generated using phantom kernels. MTF (50%, 10%, 2%) measured with H30 (3.25, 5.68, 7.45 Ip/cm) B30 (3.84, 6.25, 7.72 Ip/cm), S80 (4.69, 9.49, 12.34 Ip/cm), and U95 (14.19, 20.31, 24.67 Ip/cm). Spatial resolution for the U95 kernel (0.6 mm) was 33.3% greater than that of the H30 and B30 (0.8 mm) kernels. Initially scanned kernels images were rated for subjective image qualify, using a five-point scale. Image scanned with a convolution kernel led to an increase in noise (U95), whereas the results for CT attenuation coefficient were comparable. CT images increase the diagnostic accuracy in head (H30), abdomen (B30), temporal bone and lung (U95) kernels may be controlled by adjusting CT various algorithms, which should be adjusted to take into account the kernels of the CT undergoing the examination.

  • PDF

Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images (두개골의 3차원 영상 분석을 위한 전산화단층촬영 방법의 비교-상층 두께가 3차원 영상의 계측에 미치는 영향)

  • Jeong Ho-Gul;Kim Kee-Deog;Park Hyok;Kim Dong-Ook;Jeong Haijo;Kim Hee-Joung;Yoo Sun Koo;Kim Yong Oock;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.34 no.3
    • /
    • pp.151-157
    • /
    • 2004
  • Purpose : To evaluate the quantitative accuracy of three-dimensional (3D) images by means of comparing distance measurements on the 3D images with direct measurements of dry human skull according to slice thickness and scanning modes. Materials and Mathods : An observer directly measured the distance of 21 line items between 12 orthodontic landmarks on the skull surface using a digital vernier caliper and each was repeated five times. The dry human skull was scanned with a Helical CT with various slice thickness (3, 5, 7 mm) and acquisition modes (Conventional and Helical). The same observer measured corresponding distance of the same items on reconstructed 3D images with the internal program of V-works 4.0/sup TM/(Cybermed Inc., Seoul, Korea). The quantitative accuracy of distance measurements were statistically evaluated with Wilcoxons' two-sample test. Results: 11 line items in Conventional 3 mm, 8 in Helical 3mm, 11 in Conventional 5mm, 10 in Helical 5mm, 5 in Conventional 7mm and 9 in Helical 7mm showed no statistically significant difference. Average difference between direct measurements and measurements on 3D CT images was within 2mm in 19 line items of Conventional 3mm, 20 of Helical 3mm, 15 of Conventional 5mm, 18 of Helical 5mm, II of Conventional 7mm and 16 of Helical 7mm. Conclusion: Considering image quality and patient's exposure time, scanning protocol of Helical 5mm is recommended for 3D image analysis of the skull in CT.

  • PDF

Evaluation of Artificial Intelligence Accuracy by Increasing the CNN Hidden Layers: Using Cerebral Hemorrhage CT Data (CNN 은닉층 증가에 따른 인공지능 정확도 평가: 뇌출혈 CT 데이터)

  • Kim, Han-Jun;Kang, Min-Ji;Kim, Eun-Ji;Na, Yong-Hyeon;Park, Jae-Hee;Baek, Su-Eun;Sim, Su-Man;Hong, Joo-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Deep learning is a collection of algorithms that enable learning by summarizing the key contents of large amounts of data; it is being developed to diagnose lesions in the medical imaging field. To evaluate the accuracy of the cerebral hemorrhage diagnosis, we used a convolutional neural network (CNN) to derive the diagnostic accuracy of cerebral parenchyma computed tomography (CT) images and the cerebral parenchyma CT images of areas where cerebral hemorrhages are suspected of having occurred. We compared the accuracy of CNN with different numbers of hidden layers and discovered that CNN with more hidden layers resulted in higher accuracy. The analysis results of the derived CT images used in this study to determine the presence of cerebral hemorrhages are expected to be used as foundation data in studies related to the application of artificial intelligence in the medical imaging industry.

Effect of Inhomogeneity correction for lung volume model in TPS (Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과)

  • Chung SeYoung;Lee SangRok;Kim YoungBum;Kwon YoungHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.

  • PDF

Comparison of True and Virtual Non-Contrast Images of Liver Obtained with Single-Source Twin Beam and Dual-Source Dual-Energy CT (간의 단일선원 Twin Beam과 이중선원 이중에너지 전산화단층촬영의 비조영증강 영상과 가상 비조영증강 영상의 비교 연구)

  • Jeong Sub Lee;Guk Myung Choi;Bong Soo Kim;Su Yeon Ko;Kyung Ryeol Lee;Jeong Jae Kim;Doo Ri Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.170-184
    • /
    • 2023
  • Purpose To assess the magnitude of differences between attenuation values of the true non-contrast image (TNC) and virtual non-contrast image (VNC) derived from twin-beam dual-energy CT (tbDECT) and dual-source DECT (dsDECT). Materials and Methods This retrospective study included 62 patients who underwent liver dynamic DECT with tbDECT (n = 32) or dsDECT (n = 30). Arterial VNC (AVNC), portal VNC (PVNC), and delayed VNC (DVNC) were reconstructed using multiphasic DECT. Attenuation values of multiple intra-abdominal organs (n = 11) on TNCs were subsequently compared to those on multiphasic VNCs. Further, we investigated the percentage of cases with an absolute difference between TNC and VNC of ≤ 10 Hounsfield units (HU). Results For the mean attenuation values of TNC and VNC, 33 items for each DECT were compared according to the multiphasic VNCs and organs. More than half of the comparison items for each DECT showed significant differences (tbDECT 17/33; dsDECT 19/33; Bonferroni correction p < 0.0167). The percentage of cases with an absolute difference ≤ 10 HU was 56.7%, 69.2%, and 78.6% in AVNC, PVNC, and DVNC in tbDECT, respectively, and 70.5%, 78%, and 78% in dsDECT, respectively. Conclusion VNCs derived from the two DECTs were insufficient to replace TNCs because of the considerable difference in attenuation values.