• 제목/요약/키워드: 전산유체공학

검색결과 1,491건 처리시간 0.033초

FDS를 이용한 화재시 연소가스의 독성평가에 관한 비교 연구 (A Comparative Study on the Toxicity Evaluation for Fire Smoke by FDS)

  • 정범진;이근원
    • 한국가스학회지
    • /
    • 제19권1호
    • /
    • pp.38-44
    • /
    • 2015
  • FDS (Fire Dynamics Simulator)는 화재안전공학 분야에서 가장 널리 사용되는 전산유체역학 소프트웨어로서 화재의 성장과 영향에 대한 다양한 평가에 응용될 수 있다. 본 연구에서는 화재시 발생하는 연소가스의 독성을 평가할 수 있는 유효복용분량 (Fractional Effective Dose, FED)와 유효부분농도 (Fractional Effective Concentration, FEC) 수준을 예측하기 위하여 FDS 시뮬레이션에서 얻어진 다양한 결과를 활용하였다. 그러나 FDS에서 기본적으로 제공하는 출력값으로는 이러한 값을 직접적으로 구할 수 없으므로, 피난 시뮬레이션에서 얻어진 결과를 결부시켜 별도의 계산과정을 통하여 FED와 FEC 수준을 계산하였다. 특히, 2013년 11월에 FDS의 버전이 업데이트된 바 있어 본 연구에서는 동일한 조건에 대하여 FDS의 구버전과 신버전을 비교하여 시뮬레이션 하였으며, 그 결과 FED, FEC값에 있어서 두 버전사이에 평균 약 10%의 차이가 발생함을 확인 할 수 있었다.

스크램제트 엔진 내부 Cavity 형상 변화에 따른 혼합 성능 특성 (Mixing Characteristics of Various Cavity Shapes in SCRamjet Engine)

  • 오주영;서형석;변영환;이재우
    • 한국추진공학회지
    • /
    • 제12권1호
    • /
    • pp.57-63
    • /
    • 2008
  • 공기흡입식 추진 기관인 스크램제트 엔진은 연소기 내부 유동이 초음속으로 유동장의 연소기 내부 체류 시간이 수 ms로 매우 짧다. 이 짧은 시간동안 연소과정이 모두 이루어져야 하므로 초음속 연소기술에 대한 연구는 매우 중요하다. 본 논문은 초음속 연소 기술 중 연료-공기의 혼합을 증대시키는 방법에 관심을 두고 Cavity를 이용한 방법을 선택하여 높이를 10mm로 고정시키고 길이를 변화시켰으며, Cavity 후류에서 지름 1mm의 분사구를 통해 음속 let을 분사시키는 유동장을 형성하여 3차원 Navier-Stokes 방정식을 통해 점성 유동장을 해석하였다. 해석 결과 Cavity 길이/높이비(L/H)가 클수록 Vorticity가 값이 증가하였고 Vorticity의 증가 영역이 유동장의 위, 옆 방향으로 확장되는 것을 볼 수 있었다. 하지만 Vorticity가 증가하는 만큼 추력특성을 떨어뜨리는 정체압력 손실이 증가하므로 연소기 설계 시 최대의 혼합과 최소의 정체압력 손실을 고려한 최적 형상 설계가 필요하다는 것을 확인하였다.

흡입구 손실을 고려한 헬리콥터 추진시스템의 장착성능 해석 모델에 관한 연구 (A Study on Installed Performance Analysis Modelling for a Helicopter Propulsion System Considering Intake Loss)

  • 공창덕;고성희;기자영;전용민;안이기
    • 한국추진공학회지
    • /
    • 제12권1호
    • /
    • pp.51-56
    • /
    • 2008
  • 본 연구에서는 헬리콥터 추진시스템의 장착 성능해석 모델링 시 고려하여야 할 흡입구 모델, 블리드 공기 손실, 보기류 시스템 구동에 사용되는 출력 추출 등을 포함한 장착 성능해석을 수행하였다. 흡입구의 압력 손실은 비행마하수와 유량에 따른 압력손실 값으로 나타낸 흡입구 성능 맵을 이용하였다. 추진시스템 장착 성능해석 모델링의 검증을 위해서는 실제 시험데이터와 비교해야 하지만 데이터 확보가 어려워 상용성능해석 프로그램인 GASTURB 해석결과와 비교하였다. 해석결과 평균오차 0.5% 이내로 본 연구에서 수행한 추진시스템의 장착 성능해석 모델링의 타당성을 검증하였다.

고속 주행 시 Wheel Arch, Wheel & Side Mirror가 자동차의 공력성능에 미치는 영향에 관한 연구 (Study on the Influence of Wheel Arches, Wheels, and Side Mirrors on Aerodynamic Performance of a Fast Cruising Passenger Car)

  • 송기선;강승온;박훈일;기정도;김규홍;이동호
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.26-35
    • /
    • 2012
  • This paper investigates the influence on the aerodynamic performance of a passenger cruising very fast by some specific car body parts such as side mirrors, wheel arches and wheels designed hardly regarding aerodynamics. The magnitude of the contribution of each part is analyzed via on the CFD simulations. YF SONATA, a sedan of Hyundai Motors Company, plays a major role as the baseline car in this research, representing all passenger car. The CFD analysis condition consists of 6 different cases depending on whether each part exists or not. According to the CFD results, there were confirmed that additionally to the body parts' own drag, the car body went through somewhat the consequential increment of the drag by them. Among the 3 parts, wheel is the magnate that not only has the maximal drag but drives the drag of the passenger car to increase most steeply and the next is the side mirror.

가변밸브 작동기구를 적용한 가솔린 기관의 잔류가스분율, 체적효율, 펌핑손실 예측을 위한 해석적 연구 (Numerical Analysis for Prediction of the Residual Gas Fraction, Volumetric Efficiency and Pumping Loss with Continuous Variable Valve Lift System in an SI Engine)

  • 조용석;이성욱;장익규;박정권;윤여빈;박영준;김현철;나병철
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.7-13
    • /
    • 2010
  • To satisfy the needs on fuel economy and engine performance, continuous variable valve lift systems are applying to engines. In the CVVL system, fuel economy can be improved by reducing pumping loss during the induction process, and engine performance can be also improved by controlling volumetric efficiency and the residual gas fraction. Because the residual gas fraction directly affects volumetric efficiency, engine performance, combustion efficiency and emissions in SI engines, controlling residual gas fraction is one of the important things in engine development process. This analysis investigates the residual gas fraction and volumetric efficiency with changes of intake valve lifts and intake valve timings. In this study, unsteady state solutions were solved during exhaust and induction processes. Results show variation of the residual gas fraction and volumetric efficiency by changing intake valve timing and lift. Decreasing intake valve lift leads to increase the residual gas fraction and to decrease volumetric efficiency.

MPI Dual Injection 엔진의 온도 조건 변화에 따른 엔진 내부 유동 및 연료 거동 특성에 관한 연구 (Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Engine Temperature Condition in the MPI Dual Injection Engine)

  • 이승엽;정진택;박영준;유철호;김우태
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.210-219
    • /
    • 2014
  • The MPI dual injection engine can enhance the fuel efficiency and engine power. By using one injector per one intake port, MPI dual injection engine has an excellent fuel atomization and targeting injection. As the basic research for the MPI Dual injection engine design, this research was investigated in order to understand the characteristic of the in-cylinder flow and fuel behavior according to engine temperature condition and the fuel type in the MPI dual injection engines. The 3D unsteady CFD simulation for the MPI Dual injection engine was performed using STAR-CD. The engine operating condition was 2,000 rpm/WOT. The parameters for this study were fuel types, fuel temperatures and wall temperatures. As a result, the intake air amount, evaporated fuel in the cylinder and the fuel film on the wall were presented according to parameters that depend on the fuel properties and engine wall temperature. Also, the results were influenced by in-cylinder flow such as the intake flow, back flow and so on.

타원.인벌루트 조합 형상을 갖는 지로터 펌프의 통합적 설계 자동화 시스템 개발 (Development of an Automated Integrated Design System for Gerotor Pumps with Multiple Profiles(Ellipse and Involute))

  • 문현기;정성윤;배준호;장영준;김철
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.67-77
    • /
    • 2010
  • An internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobe with elliptical and involute shapes, while the inner rotor profile is determined as conjugate to the other. And the integrated design system which is composed of three main modules has been developed through AutoLISP under AutoCAD circumstance plus CFD-ACE+. It generates new lobe profile and calculates automatically the flow rate and flow rate irregularity according to the lobe profile generated. CFD simulation results show trends similar to those carried out in experiments, and a quantitative comparison is presented. Results obtained from the automotive integrated design system enable the designer and manufacturer of oil pump to be more efficient in this field.

공조용 로터리 압축기의 소음 저감에 관한 연구 (A Study on Noise Reduction of Rotary Compressor)

  • 안병하;김영수
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.60-69
    • /
    • 1999
  • The noise and vibration sources of rotary compressor for room air-conditioner are pressure pulsation of compression process, cavity resonance of inner space, structural radiation noise of shell and impact noise of discharge valve. Among them, pressure pulsation is very important noise and vibration source. Because it transferred various kinds of noise and vibration like as mentioned above. In this reason, muffler and resonator are used in order to absorb and remove these noises. But an analytical prediction using acoustic analysis does not coincident with the experimental result. The difference between analysis and actual state is due to the assumption of analysis. This paper covered with new concept of muffler design based on the turbulence kinetic energy of flow by using CFD. From this analysis, it is possible to decide the best position of discharge port of muffler. Therefore $2{\sim}3dB$ noise reduction effect is acquired in rotary compressor of 5000 BTU grade. Also new approach of resonator design is suggested. From this study, the characteristics of resonator and surge hole (a kind of resonator without pipe length) are identified. The former is useful for pure tone noise (narrow frequency band), and the latter is effective for broad frequency band. This paper shows that it is very available to use 3 dimensional analysis of resonator in order to predict more exact tuning frequency. The result is proved by a lot of experiments. From combination of fluid analysis and acoustic analysis, up stream position is effective location of resonator concerning turbulence motion of fluid.

  • PDF

전산유체역학 기법을 이용한 돈사 내 습식 공기 정화기의 적정 위치 설계 (Analysis on the Optimum Location of an Wet Air Cleaner in a Livestock House using CFD technology)

  • 권경석;이인복;황현섭;;홍세운;서일환;최지선;송상현;문운경
    • 한국농공학회논문집
    • /
    • 제52권3호
    • /
    • pp.19-29
    • /
    • 2010
  • In South Korea, as the living standard has been getting higher, meat consumption is steadily increasing. To meet the country's demand, livestock houses become larger and wider with increased raising density. In larger livestock houses, pollutants such as flake of pig skin, excrement, odor, various dusts and noxious gas like ammonia are excessively accumulated inside the facility. These will cause weak immunity for the pigs, diminution of productivity and degeneration of working condition. These problems can be solved through the ventilation performance of the facility. In the winter time, ventilation must be controlled to minimum to maintain a suitable thermal condition. However, this affects the other internal environmental condition because of the minimum ventilation. The installation of "wet air cleaner" especially in the winter time can be an alternative solution. For efficient application of this machine, there is a need to understand the existing ventilation condition and analyze the interaction of existing ventilation system with the wet air cleaner considering its appropriate location. In this study, the existing ventilation system as well as the internal environmental condition negatively inside the facility with the wet air cleaner has been studied using CFD technology. The CFD simulation model was validated from the study conducted by Seo et al. (2008). Results show that the elimination rate of ammonia was 39.4 % and stability could be improved to 35.1 % (Comparing case 5 to 1 where wet air cleaner machine was not used). It can therefore be concluded that case 5 shows the optimum location of a wet air cleaner in the livestock house.

PFI Dual Injection 엔진의 연료 분사각도와 분무각에 따른 엔진 내부 유동 및 연료 거동 특성 (Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Fuel Injection Angle and Cone Angle in the PFI Dual Injection Engine)

  • 이승엽;정진택;박영준;유철호;김우태
    • 한국자동차공학회논문집
    • /
    • 제23권2호
    • /
    • pp.221-229
    • /
    • 2015
  • The PFI dual injection engine using one injector per an intake port was developed for solving the DISI engine cost problem. Excellent fuel atomization and targeting of the PFI dual injection engine made enhancement on the fuel efficiency and engine power. In order to develop a PFI dual injection engine, characteristics of the in-cylinder flow and fuel behavior with respect to fuel injection angle and cone angle of the PFI dual injection engine was investigated. Numerical calculation was conducted to analyze 3D unsteady in-cylinder flow and fuel behavior using STAR-CD. The engine operating condition was 2,000rpm at WOT. As a result, the amount of intake air, evaporated fuel and fuel film according to injection angle and cone angle were presented. The results were influenced by interaction between injected fuel and intake port wall.