• Title/Summary/Keyword: 전산유체공학

Search Result 1,496, Processing Time 0.026 seconds

A Study on Prediction of Sedimentation Efficiency for Sedimentation Basin using Lagrangian Method (침전지의 유동 특성과 Lagrangian Method를 이용한 침전효율 예측에 관한 연구)

  • Choi, Jong-Woong;Hong, Sung-Taek;Kim, Seong-Su;Kim, Youn-Kwon;Park, No-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.229-236
    • /
    • 2017
  • Flow characteristics analysis and tracer test simulations for the rectangular typed sedimentation basins, which have been operated at D_water treatment plant in Korea, were carried out using CFD (Computational Fluid Dynamics) techniques for design ($15,864m^3/day$) and operation flowrate ($33,333m^3/day$). Also, each efficiency of the sedimentation basin was evaluated by application of the Lagrangin technique on the assumption of the particles flowing into the inlet of the sedimentation basin. From the results of simulation, the mean velocity values for making the flow in the settling basin as a plug flow region were derived as 0.00193 m/s and 0.00417 m/s, respectively. In addition, ${\beta}$ (effective contact factor) values were calculated to be 0.51 and 0.46, and the Morrill Index values were 6.05 and 3.21, respectively for both flowrate conditions.

Development of a Numerical Algorithm for the Evaluation of Aerodynamic Driving Stability of a Vehicle (주행차량의 공기역학적 주행안전성 평가를 위한 알고리즘 개발연구)

  • Kim, Chul-Ho;Kim, Chang-Sun;Lee, Seung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.265-272
    • /
    • 2016
  • The objective of vehicle aerodynamic design is on the fuel economy, reduction of the harmful emission, minimizing the vibration and noise and the driving stability of the vehicle. Especially for a sedan, the driving stability of the vehicle is the main concern of the aerodynamic design of the vehicle indeed. In this theoretical study, an evaluation algorithm of aerodynamic driving stability of a vehicle was made to estimate the dynamic stability of a vehicle at the given driving condition on a road. For the stability evaluation of a driving vehicle, CFD simulation was conducted to have the rolling, pitching and yawing moments of a model vehicle and compared the values of the moments to the resistance moments. From the case study, it is found that a model sedan running at 100 km/h in speed on a straight level road is stable under the side wind with 45 m/s in speed. But the different results may be obtained on the buses and trucks because those vehicles have the wide side area. From the case study of the model vehicle moving on 100 km/h speed with 15 m/s side wind is evaluated using the numerical algorithm drawn from the study, the value of yawing moment is $608.6N{\cdot}m$, rolling moment $-641N{\cdot}m$ and pitching moment $3.9N{\cdot}m$. These values are smaller than each value of rotational resistance moment the model vehicle has, and therefore, the model vehicle's driving stability is guaranteed when driving 100 km/h with 15 m/s side wind.

Development of Wind Noise Analysis Procedure and Its Verification Using CFD Tool around an OSRVM (CFD를 이용한 OSRVM 주변의 공력소음 해석과정 개발 및 검증)

  • Park, Hyun-Ho;Han, Hyun-Wook;Kim, Moon-Sang;Ha, Jong-Paek;Kim, Yong-Nyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.92-102
    • /
    • 2012
  • The process of the wind noise analysis around an OSRVM is developed and is verified by simulating unsteady flow field past a generic OSRVM mounted on the flat plate at the Reynolds number of $Re_D=5.2{\times}10^5$ based on the mirror diameter. The transient flow field past a generic OSRVM is simulated with various turbulence models, namely DES-SA, LES Constant SGS, and LES Dynamic SGS. The sound radiation is predicted using the Ffowcs- Williams and Hawkings analogy. For the present simulation, the 6.35million cells are generated. Time averaged pressure coefficients at 34 locations on the surface of the generic OSRVM are compared with the available experimental data. Also, 12 Sound Pressure Levels located on the surrounding mirror are compared with the available experimental data. Both of them show good agreements with experimental data.

NOx Emission Characteristics Depending on the Variations in Yaw Angle of the Secondary Air Nozzles in a Coal Fired Boiler (연소용 이차공기 수평분사각에 따른 질소산화물(NOx) 배출특성)

  • Kim, Young-Joo;Park, Ho-Young;Lee, Sung-No
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.272-277
    • /
    • 2009
  • Three dimensional numerical analysis for the coal fired boiler has been performed to investigate the effect of yaw angle variation of the secondary air nozzles on the combustion characteristics and NOx emission. It was found that the prediction gives a good agreement with plant data. The increase in yaw angle up to $20^{\circ}$ have results in the decrease in NOx emission at furnace exit and recirculation flow intensity, together with the increase of unburned carbon in ash. It also has been recognized the remarkably change in configuration of fire ball with increase in yaw angle. The results from this study would be valuable in the case of the combustion modification of the corner firing coal-fired utility boiler.

Pressure Recovery in a Supersonic Ejector of a High Altitude Turbofan Engine Testing Chamber (터보팬 엔진의 고고도 성능의 초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.53-59
    • /
    • 2010
  • This research aims in finding a more optimal ejector size for evacuating engine exhaust gasses and 20% of the cell cooling air. The remaining 80% of cell cooling air pumped into the test chamber is separately exhausted from the test chamber via a discharge port fitted with flow control valves and vacuum pump. Unlike its predecessor this configuration utilizes a smaller capture area to improve pressure recovery. The modified ejector size has a diameter of 1100mm enough to evacuate 66kg/s jet engine exhaust in addition to about 20%, 24kg/s of the cell cooling air tapped from the sterling chamber. This configurations has an area ratio of the engine exit and ejector inlet of about 1.2. Simulation results of the proposed ejector configuration, indicates improved pressure recovery.

A Study on Hydraulic Modifications of Low-Pressure Membrane Inlet Structure with CFD and PIV Techniques (CFD와 PIV 기법을 이용한 저압막 유입부 수리구조 개선에 관한 연구)

  • Oh, Jeong Ik;Choi, Jong-Woong;Lim, Jae-Lim;Kim, Donggil;Park, No-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.607-618
    • /
    • 2015
  • This study was conducted to suggest hydraulic modification for improving evenness of inlet flow distribution into side stream type low-pressure MF (microfiltration) module using CFD (computational fluid dynamics) simulation and PIV (particle image velocimetry) techniques. From the results of CFD simulation for various typed inlet structure, it was investigated that installing internal orifice baffle in inlet the distribution channel could improve the evenness of inlet flow distribution over about 40%. Also, from the results of PIV measurements which were carried out for verifying the CFD simulation, it was observed that the momentum of the water body coming from the opposite side of the inlet was relatively larger. This momentum would generate strong shear force in the near of inlet side wall. On the other hands, occurrence of dead zone and eddy flow was confirmed in the opposite side.

Study on Numerical Analysis of Shape and Guidevane Design for Improving a 500 PS SCR Reactor's Flow Uniformity (500 PS SCR 반응기의 유동균일도 향상을 위한 형상 및 가이드베인 설계에 대한 수치해석적 연구)

  • Seong, Hongseok;Lee, Chungho;Suh, Jeongse
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • With the assumption that the performance of a catalyst is guaranteed and that the performance of an SCR reactor is influenced by the uniformity of fluid flow into the catalyst, this study carried out a numerical analysis of flow uniformity, which is an important design factor in SCR reactors. CFD was used to grasp flow uniformity and flow characteristics inside the SCR reactor. As for the flow uniformity, analysis was carried out on the velocity and direction of the fluid flowing into the front of the first SCR reactor. Numerical analysis was carried out in terms of the area ratios of the mixing evaporator to the catalyst for 500 PS SCR, 1 : 1.9, 1 : 3.1, 1 : 4.5, and 1 : 7.0. The results showed that the larger the area ratio, the smaller the flow uniformity. On the basis of these results, the flow uniformity of the modified SCR reactor is 77%. A guidevane was installed to improve flow uniformity, and attempts were made to grasp the flow uniformity based on the shape of the guide vane. The shape of the guide vane was cylindrical, and numerical analysis was carried out for cases with two cylinders and three cylinders. As a result of the numerical analysis, it was found that while there was no great difference between 82.7% with two cylinders and 81.7% with three cylinders, the effects of the installation of the guide vane on the improvement of flow uniformity were indisputable.

A Numerical Study on Plate-Type Heat Exchanger Using One-Dimensional Flow Network Model and Porous-Media Model (1차원 유동 네트워크 모델 및 다공성매질 모델을 이용한 판형 열교환기의 수치적 연구)

  • Park, Jaehyun;Kim, Minsung;Min, June Kee;Ha, Man Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • A typical heat exchanger, found in many industrial sites, is made up of a large number of unitary cells, which causes difficulties when carrying out full-scale three-dimensional numerical simulations of the heat exchanger to analyze the aero-thermal performance. In the present study, a three-dimensional numerical study using a porous media model was carried out to evaluate the performance of the heat exchanger modelled in two different ways : full-scale and simplified. The pressure drop in the air side and gas side along with the overall heat transfer rate were calculated using a porous media model and the results were then compared to results obtained with a one-dimensional flow network model. The comparison between the results for two different geometries obtained using a porous media model and a one-dimensional flow network model shows good agreement between the simplified geometry and the one-dimensional flow network model. The full-scale geometry shows reasonable differences caused by the geometry such as sudden expansion and contraction.

A Study of Wind Pressure Distribution for a Rectangular Building Using CFD (CFD를 이용한 박스형 건물의 풍압분포 분석에 관한 연구)

  • Shin, Dongshin;Park, Jaehyun;Kang, Bomi;Kim, Eunmi;Lim, Hyeongjun;Lee, Jinyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • This paper studies the wind pressure distribution over the Commonwealth Advisory Aeronautical Council building model (CAARC model) using CFD. We also considered the interaction between the CAARC model and other buildings. The Reynolds number based on the building height was 380,000. The number of sells for the simulation was about 500,000. The wind pressure was lowest when the wind direction was blowing at an angle 45 degrees of the CAARC model. When the gap between the two buildings in front of the CAARC was over 1/2 the horizontal length of the CAARC model, the wind pressure was higher than the pressure without the two buildings. When the distance between the two front buildings and the CAARC was less than 1.5 times the vertical length of the CAARC model, the wind pressure increased. Accordingly, the relative distance between two buildings or the distance from the CAARC model should be considered when extra wind exists due to other buildings.

A Study on Numerical Technique of the Hardened Grout Formed by Grouting (약액주입 시 형성된 고결체의 수치해석 기법 연구)

  • Lee, Jong-Hwi;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.27-37
    • /
    • 2011
  • Recently, pressure grouting is widely being used in construction site for strength improvement of ground and water proof, reinforcement and so on. It is necessarily required to estimate an appropriate injection pressure and injection time for economical and reasonable construction in the site through the size and shape of the hardened grout measured according to ground condition. However, sampling for the hardened grout is time-consuming and needs high cost on preliminary test in the site. The system which could predict the size and shape of the hardened grout does not exist until now. Thus, numerical method based on VOF method and porous model was used for the calibration chamber injection test with injection pressure (50 kPa, 100 kPa, 150 kPa) in this study. The results indicate that the numerical technique based on VOF method and porous model among CFD analysis is expected to be a basic study for the prediction of the behavior and solidification of pressure grouting.