• Title/Summary/Keyword: 전산유체공학

Search Result 1,491, Processing Time 0.294 seconds

A Study of the Measurement of the Flow Coefficient Cv of a Ball Valve for Instrumentation (계장용 볼 밸브 유량계수 Cv 측정에 관한 연구)

  • Kang, Chang-Won;Yi, Chung-Seob;Jang, Se-Min;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.103-108
    • /
    • 2019
  • The results of the measurement of the flow-rate coefficient (Cv-value) and the analysis of a small ball valve are summarized follows. The Cv-values of 1/2-, 3/4- and 1-inch ball valves were measured using a flow-rate measurement test. The manufacturer obtained the Cv-value using a theoretical calculation method. The new experimental measurement and analysis method yielded more reliable results. In addition, the Cv value obtained through numerical analysis was almost identical the value provided by the manufacturer, which was based on experimental results. A Study on Flow Analysis results are all similar appearances as the reliability of the results.

Experiment and Flow Analysis of the Flow Coefficient Cv of a 1 inch Ball Valve for a Thermal Power Plant (화력발전소용 1인치 볼 밸브 유량계수 Cv에 관한 유동해석 및 실험에 관한 연구)

  • Kang, Chang-Won;Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.109-115
    • /
    • 2019
  • The purpose of this study was to analyze and test the flow rate of a 1-inch ball valve used in a thermal power plant. To identify the flow-rate characteristics, numerical analysis was conducted and an experimental apparatus of the valve flow rate coefficient was used to compare the flow coefficient Cv values. To determine the internal pressure distribution, the sites of opening ball valves and flow fields were investigated. In particular, a smaller the valve opening resulted in a more complicated the flow field of the ball. The valve flow characteristic test showed that the Cv value and flow rate increased with increasing valve-opening rate and the secondary function was performed. The pressure drop increased as the valve opening rate decreased. In addition, the experimental results for the flow analysis are similar to the numerical analysis results.

Present State of CFD Softwares Application for Launch Vehicle Analysis (발사체 해석을 위한 CFD 소프트웨어 적용 현황)

  • Jeong, Hwanghui;Kim, Jae Yeol;Shin, Jae-Ryul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.71-80
    • /
    • 2020
  • Before we develop LVAFoam, a CFD software for launch vehicle analysis, we conducted a survey on other CFD softwares. We looked at in-house code and commercial CFD software of other countries that were used as a simulation of launch vehicle's combustor, turbopump and external flow. This research included in-house code solvers, developed by NASA, Mississippi State University, DLR, Bertin Technologies, CNES, CERFACS, and JAXA as well as commercial CFD software from FLUENT, CFX, Advance/FrontFlow/red, GASP, CRUNCH CFD, CFD-ACE+, FINETM/Turbo, STAR-CCM+. The simulation cases of launch vehicle analysis from each commercial softwares and introduction of the LVAFoam were presented.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part II - Variation in Radius of Curvature of Groove Edge (그루브의 Trap 효과에 대한 CFD 해석: 제2부 - 그루브 모서리의 곡률반경 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.359-364
    • /
    • 2020
  • Numerical investigation of the groove trap effect with variation in the groove-edge radius of curvature is presented here. The trap effect is evaluated in a two-dimensional sliding bearing using computational fluid dynamics (CFD). This simulation is based on the discrete phase model (DPM) and standard k - ε turbulence model using commercial CFD software, FLUENT. The numerical results are evaluated by comparisons with streamlines and particle trajectories in the grooves. Grooves are applied to various lubrication systems to improve their lubrication characteristics, such as load carrying capacity increment, leakage reduction, frictional loss reduction, and preventing three-body abrasive wear due to trapping effect. This study investigates the grove trapping effect for various groove-edge radius of curvature values and Reynolds numbers. The particle is assumed to be made of steel, with a circular shape, and is injected as a single particle in various positions. One-way coupling is used in the DPM model because the single particle injection condition is applied. Further, the "reflect" condition is applied to the wall boundary and "escape" condition is used for the "pressure inlet" and "pressure outlet" boundaries. From the numerical results, the groove edge radius is found to influence the groove trap effect. Moreover, the groove trap effect is more effective when applying the groove edge radius.

Variation of Collection Efficiency with Turbulence Model in a Mini Cyclone for Collecting Automobile Brake Fine Dust (자동차 브레이크 미세먼지 포집을 위한 미니 사이클론의 난류모델에 따른 포집효율 변화)

  • Han, Dong-Yeon;Lee, Young-Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.47-52
    • /
    • 2021
  • Fine dust generated from vehicle brakes accounts for a significant amount of fine dust from non-exhaust system. Since such brake fine dust contains a large number of heavy metal components that are fatal to the human body, a device capable of collecting them needs to be developed. A mini cyclone, one of the devices that can effectively collect fine dust, has the advantage of relatively simple shape and high collection efficiency. Therefore, in this study, the collection efficiency of the mini-cyclone was numerically analyzed using CFD in order to find out whether such a mini-cyclone is suitable for collecting brake fine dust. As a result, the cut-off diameter was predicted to be about 1.5㎛, which means that the particle trapping load of the filter can be drastically reduced. Therefore, there is a possibility that the mini-cyclone can be used to collect fine dust from disc brakes.

A Study on the Thermal Characteristics of the Vacuum Jacket Valve for Transporting Liquefied Hydrogen According to the Degree of Vacuum (액화수소 수송용 진공자켓 밸브의 진공도에 따른 열적특성에 대한 연구)

  • OH, SEUNG JUN;JEON, KYUNG SOOK;YOON, JEONG HWAN;CHOI, JEONGJU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.585-591
    • /
    • 2021
  • Liquefied hydrogen have advantage which reduces the volume by about 800 times or more compared to hydrogen gas, so it is possible to increase the storage density. However, liquefied hydrogen produced by cryogenic cooling of 20 K or less at normal pressure has a problem of maximizing the insulation effect that blocks heat introduced from the outside. Representative insulation technologies include vacuum insulation and multi-layer insulation materials and in general, heat blocking is attempted by combining insulation technologies. Therefore, in this study, the pressure of the internal vacuum layer was changed to 10-1, 10-2, 10-3 and 10-4 Torr to confirm the thermal insulation performance of the vacuum jacket valve for transporting liquefied hydrogen. As a result, it was confirmed that the insulation performance improved as the degree of vacuum increased.

Optimization of Distribution Basin Weirs at a Sewage Treatment Plant Based on Computational Fluid Analysis Using the Taguchi and Minitab Method (전산유체해석과 다구찌 및 미니탭 방법을 활용한 하수처리장 분배조 웨어 최적화)

  • Jung, Yong-Jun;Park, Hae-Sik;Cho, Young-Man
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.983-991
    • /
    • 2021
  • The role of the distribution basin role is to apportion incoming raw water to the primary sedimentation basin as part of the water treatment process. The purpose of this study was to calculate the amount of water in the distribution basin using computational fluid dynamics (CFD) analysis and to find a way to improve any non-uniformity. We used the Taguchi method and the minitab tool as optimization methods. The results of the CFD calculation showed that the distribution flow had a deviation of 5% at the minimum inflow, 10% at the average inflow, and 22% at the maximum inflow. At maximum flow, the appropriate heights of the 7 weirs(C, D, A, B, E, F, G) were 40 mm, 20 mm, 20 mm, 0, 0, 0, and 20 mm, respectively, according to the Taguchi optimization tool. Here, the maximum deviation of the distribution amount was 9% and the standard deviation was 23.7. The appropriate heights of the 7 weirs, according to the Minitab tool, were 40 mm, 20 mm, 20 mm, 0, 0, 0, and 20 mm, respectively, for weirs C, D, A, B, E, F, and G. Therefore, the maximum deviation of the distribution amount was 8% and the standard deviation was 17.1, which was slightly improved compared to the Taguchi method.

Resistance Performance Simulation of Simple Ship Hull Using Graph Neural Network (그래프 신경망을 이용한 단순 선박 선형의 저항성능 시뮬레이션)

  • TaeWon, Park;Inseob, Kim;Hoon, Lee;Dong-Woo, Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.393-399
    • /
    • 2022
  • During the ship hull design process, resistance performance estimation is generally calculated by simulation using computational fluid dynamics. Since such hull resistance performance simulation requires a lot of time and computation resources, the time taken for simulation is reduced by CPU clusters having more than tens of cores in order to complete the hull design within the required deadline of the ship owner. In this paper, we propose a method for estimating resistance performance of ship hull by simulation using a graph neural network. This method converts the 3D geometric information of the hull mesh and the physical quantity of the surface into a mathematical graph, and is implemented as a deep learning model that predicts the future simulation state from the input state. The method proposed in the resistance performance experiment of simple hull showed an average error of about 3.5 % throughout the simulation.

Multiphase CFD Analysis of Microbubble Generator using Swirl Flow (선회유동을 이용한 마이크로버블 발생기의 다상유동 전산유체역학 해석)

  • Yun, S.I.;Kim, H.S.;Kim, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • Microbubble technology has been widely applied in various industrial fields. Recently, research on many types of microbubble application technology has been conducted experimentally, but there is a limit in deriving the optimal design and operating conditions. Therefore, if the computational fluid dynamics (CFD) analysis of multiphase flow is used to supplement these experimental studies, it is expected that the time and cost required for prototype production and evaluation tests will be minimized and optimal results will be derived. However, few studies have been conducted on multiphase flow CFD analysis to interpret fluid flow in microbubble generators using swirl flow. In this study, CFD simulation of multiphase flow was performed to analyze the air-water mixing process and fluid flow characteristics in a microbubble generator with a dual-chamber structure. Based on the simulation results, it was confirmed that a negative pressure was formed on the central axis of rotation due to the strong swirling flow. And it could be seen that the air inside the suction tube was introduced into the inner chamber of the microbubble generator. In addition, as the high-speed mixed fluid collided with external water sucked by the negative pressure near the outlet, a large amount of microbubbles was ejected due to the shear force between the two flows flowing in opposite directions.

Performance Analysis in Direct Internal Reforming Type of Molten Carbonate Fuel Cell (DIR-MCFC) according to Operating Conditions (직접내부개질형 용융탄산염 연료전지(DIR-MCFC)의 운전 조건에 따른 성능 분석)

  • JUNG, KYU-SEOK;LEE, CHANG-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • In this study, the operation characteristics of the internal reforming type molten carbonate fuel cell (MCFC) were studied using computational fluid dynamics (CFD) analysis according to the steam to carbon ratio (S/C ratio), operating temperature, and gas utilization. From the simulation results, the distribution of gas composition due to the electrochemical reaction and the reforming reaction was predicted. The internal reforming type showed a lower temperature difference than the external reforming type MCFC. As the operating temperature decreased, less hydrogen was produced and the performance of the fuel cell also decreased. As the gas utilization rate decreased, more gas was injected into the same reaction area, and thus the performance of the fuel cell increased.