• 제목/요약/키워드: 전산유체공학

검색결과 1,501건 처리시간 0.023초

모사 디젤 화학반응 메커니즘의 각 성분이 화학적 점화 지연 시간에 미치는 영향에 관한 기초 연구 (Fundamental Study on the Chemical Ignition Delay Time of Diesel Surrogate Components)

  • 김규진;이상열;민경덕
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.74-81
    • /
    • 2013
  • Due to its accuracy and efficiency, reduced kinetic mechanism of diesel surrogate is widely used as fuel model when applying 3-D diesel engine simulation. But for the well-developed prediction of diesel surrogate reduced kinetic mechanism, it is important to know some meaningful factors which affect to ignition delay time. Meanwhile, ignition delay time consists of two parts. One is the chemical ignition delay time related with the chemical reaction, and the other is the physical ignition delay time which is affected by physical behavior of the fuel droplet. Especially for chemical ignition delay time, chemical properties of each fuel were studied for a long time, but researches on their mixtures have not been done widely. So it is necessary to understand the chemical characteristics of their mixtures for more precise and detailed modeling of surrogate diesel oil. And it shows same ignition trend of paraffin mixture with those of single component, and shorter ignition delay at low/high initial temperature when mixing paraffin and toluene.

OSRVM의 형상 및 장착 위치가 차량의 공력성능에 미치는 영향 (Aerodynamic Performance Dependency on the Geometric Shape and Mounting Location of OSRVM)

  • 한현욱;박현호;김문상;하종백;김용년
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.30-42
    • /
    • 2013
  • This study investigates the effects of OSRVM mounting location and its configurations such as stalk height and housing height on the aerodynamic performance of the passenger car. In order to validate the flow solver, FLUENT which is very well known commercial code, the flow field around an Ahmed Body was analyzed numerically and compared with the experimental data. The predicted aerodynamic performance and flow patterns around a car show good agreements with the experimental data. Mounting location and stalk height should be designed while OSRVM is mounted on the car to evaluate the aerodynamic performance precisely. Housing height, however, may be designed independent of the car because the aerodynamic interference between housing height and car configuration is negligible.

과수원용 스프레이어의 농약 살포 및 비산 예측을 위한 전산유체해석 (CFD Modeling of Pesticide Flow and Drift from an Orchard Sprayer)

  • 홍세운;김락우
    • 한국농공학회논문집
    • /
    • 제60권3호
    • /
    • pp.27-36
    • /
    • 2018
  • Effective pesticide applications are needed to assure the quality and economic competitiveness of fruit production and lower the risk of spray drift. Experimental studies have shown that better spray coverage and less driftability require an understanding of the transport of spray droplets within turbulent airflows in the orchard and the interaction between droplet dynamics and tree canopies. This study developed a computational fluid dynamics (CFD) model to predict pesticide flows in the orchard and spray drift discharged from an air-assisted orchard sprayer. The model represented the transport of spray droplets as well as droplets captured by tree canopies, which were modeled as a conical porous model and branched tree model. Validation of the CFD model was accomplished by comparing the CFD results with field measurements. Spray depositions inside tree canopies and at off-target locations were in good agreement with the measurements. The resulting data presented that 38.6%~42.3% of the sprayed droplets were delivered to the tree canopies while 13.6%~20.1% were drifted out of the orchard, part of them reached farther than 200 m from the orchard. The study demonstrates that CFD model can be used to evaluate spray application performance and spray drift potential.

루버형과 파형핀 열교환기에서 분진이 성능에 미치는 영향에 관한 연구 (A Study of Dust Effect on Performance of Heat Exchangers with Louver and Wavy Fins)

  • 이영림;황순호
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.126-132
    • /
    • 2009
  • Automotive heat exchangers use louver fins for their high efficiency. However, the efficiency can significantly drop for constructional vehicles or heavy equipments due to dust deposited on the louver fins with narrow slits. Thus it is necessary to develop new fins that lead to less fouling, so that a better performance can be achieved after exposure to a dusty environment over long period of time. New wavy fins were considered in the study and numerically analysed to compare with louver fins in the areas of air-side pressure drop, heat release rate, and particulate deposition. In addition, an experiment was done on the pressure drop and the particulate deposition. The results showed that the wavy fins would be a better choice for long-term use due to the excellent dust-proof performance in comparison to louver fins, in spite of the initial inferior performance of heat release.

자동차 정션박스의 열성능 개선을 위한 연구 (A Study of the Improvement of Thermal Performance of a Junction Box of a Passenger Car)

  • 이영림
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.136-142
    • /
    • 2008
  • Thermal management of a junction box of a passenger car has recently become more challenging due to its smaller size and larger current capacity. Thus, it is essential to perform the thermal optimization of a junction box in its design on an early stage of vehicle design. In this study, 3 dimensional CFD simulation with experimental measurement has been done to study for better thermal management of the junction box. First, the study of thermal characteristics of electric relays in the junction box has revealed that each surface of the relay has very different thermal resistance. In addition, an idea to install a cooling fan on the junction box has been studied and it was found that the forced cooling method was not effective on the system to keep the thermal resistance to the reasonable level of the junction box. Finally, the effect of external flows around the junction box on the temperatures of the relays, fuses, etc. has been studied and the result shows that the installation of the junction box at the proper place in an engine room can avoid any unnecessary overdesign in thermal management.

대형 디젤 엔진용 요소분사 SCR촉매의 deNOx 성능향상을 위한 요소수용액의 분사특성 연구 (A Study on the Injection Characteristics of Urea Solution to Improve deNOx Performance of Urea-SCR Catalyst in a Heavy Duty Diesel Engine)

  • 정수진;이천환
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.165-172
    • /
    • 2008
  • Urea-SCR, the selective catalytic reduction using urea as reducing agent, has been investigated for about 10 years in detail and today is a well established technique for deNOx of stationary diesel engines. In the case of the SCR-catalyst a non-uniform velocity and $NH_3$ profile will cause an inhomogeneous conversion of the reducing agent $NH_3$, resulting in a local breakthrough of $NH_3$ or increasing NOx emissions. Therefore, this work investigates the effect of flow and $NH_3$ non-uniformities on the deNOx performance and $NH_3$ slip in a Urea-SCR exhaust system. From the results of this study, it is found that flow and $NH_3$ distribution within SCR monolith is strongly related with deNOx performance of SCR catalyst. It is also found that multi-hole injector shows better $NH_3$ uniformity at the face of SCR monolith face than one hole injector.

액체-기체 2상 유동장의 정확하고 강건한 해석 Part 1: 충격파 안정적인 2상 유동 수치기법의 개발 (Accurate and Robust Computations of Gas-Liquid Two-Phase Flows Part 1: Development of Shock-Stable Two-Phase Schemes)

  • 임승원;김종암
    • 한국항공우주학회지
    • /
    • 제37권1호
    • /
    • pp.1-16
    • /
    • 2009
  • 최근 공학적으로 응용 범위가 넓은 액체-기체의 2상 유동장에 대한 전산 해석이 주목을 받고 있다. 본 연구에서는 밀도차가 큰 압축성 2상 유동장을 해석하기에 적합하도록 기존에 개발된 RoeM과 AUSMPW+ 공간 이산화 기법을 확장하였다. RoeM과 AUSMPW+에서 사용되는 충격파 포착항을 2상 혼합류의 상태방정식으로부터 새롭게 정의하여, 밀도와 음속이 상이한 두 유체에서도 정확성을 보장하면서 충격파 불안정성을 제거할 수 있도록 하였다. 개발된 2상 유동 RoeM과 AUSMPW+를 몇 가지 예제 문제에 적용하여 검증하였으며, 해석 결과는 두 수치기법이 일반적인 2상 유동에서도 충격파 안정적이며 정확한 특성을 갖는 것을 보여주었다.

서로 다른 램제트 흡입구에 따른 공기역학적 특성 연구 (The Study of Aerodynamic Characteristics of Ram-jet with Different Intake)

  • 박순종;박종호
    • 한국추진공학회지
    • /
    • 제14권6호
    • /
    • pp.9-16
    • /
    • 2010
  • 고체연료 램제트 추진의 경우 간단한 구조에 비해 높은 성능과 추진력을 얻을 수 있는 매력적인 추진기관이다. 본 연구의 목적은 두가지 유형의(스파이크 & 피토) 흡입구에 대한 공기역학적 특성을 파악함에 있다. 마하수 3.0의 실험조건에서 연소실의 압력과 $0^{\circ}$$4^{\circ}$의 받음각의 변화에 따라 흡입구 벽면의 압력값을 측정하였다. 본 연구는 초음속 유동장치와 쉴리렌 시스템을 이용하여 수행되었으며 동일 실험조건에서 스파이크 형이 피토 형보다 약 2배 높은 전압력 회복율을 나타내었다. 전산유체 해석을 통하여 흡입구 내부흐름을 실험결과 값과 비교 분석하였다.

마이크로 표면주름 형상에 따른 열전달 촉진효과 기초연구 (Fundamental Study on Heat Transfer Enhancement Effect of Microscale Surface Wrinkles)

  • 박희진;박상후
    • 설비공학논문집
    • /
    • 제26권9호
    • /
    • pp.447-452
    • /
    • 2014
  • We evaluated heat transfer characteristics of microscale wrinkles using a CFD (computational fluid dynamics) analysis. In order to verify the heat transfer effect of wrinkles having various shapes, we introduce wrinkling processes to generate few different shapes of wrinkles such as macroscale ($200{\sim}400{\mu}m$ width), microscale ($10{\sim}30{\mu}m$ width), and hierarchical (microscale on macroscale wrinkle) wrinkles, using repetitive-dividing-volume (RDV) method for single-shape of wrinkles and connected method of UV-weakly polymerization with thermal curing for hierarchical structure of winkles. The analysis results of simplified CFD model showed that heat flux on heated plate was changed by the shape of wrinkles on the plate. The increase in heat flux of about 2.6 times was achieved in the case where hierarchical wrinkle structure was used.

와류 안정화를 위한 후향계단 유동 능동제어기법 (Active Flow Control Technology for Vortex Stabilization on Backward-Facing Step)

  • 이진익
    • 전자공학회논문지
    • /
    • 제50권1호
    • /
    • pp.246-253
    • /
    • 2013
  • 본 논문에서는 유동의 안정된 흐름 제어를 위한 유동제어에 대해 다룬다. 전산유체역학 해석을 통해 제공된 대용량의 유동 데이터를 POD 방법을 통하여 축약하고, 제어측면에서 시간 및 주파수 영역에서의 분석에 근거하여 적절한 수준의 저차 모델링한다. 한편, 유동장 표면에 부착된 압력센서로부터 공간상의 유동상태 추정을 위해 신경망 구조를 갖는 유동추정기를 구성하고, 되먹임 유동제어기를 설계함으로써 유동제어루프를 구성한다.