• Title/Summary/Keyword: 전산기 시뮬레이션

Search Result 68, Processing Time 0.027 seconds

A Performance Evaluation of Plate Type Enthalpy Exchanger through CFD Analysis of Elements (열 교환 소자 형상의 CFD 시뮬레이션을 통한 판형 전열 교환기 성능평가)

  • Kang, In-Sung;Ahn, Tae-Kyung;Park, Jin-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In order to better save energy, many buildings have been constructed with high levels of insulation and airtightness in recent years. Additionally, having high quality indoor air has become more relevant, necessitating a ventilating system. This study is aimed at evaluating the performance of a humidity exchanger through computational fluid dynamics (CFD) analysis of elements for the purpose of providing comfortable indoor air and reduced energy consumption. The simulation was conducted with three different shapes (triangle, rectangular, and curve) of heat exchanger elements, in order to find the most effective element. A follow-up simulation then proved the efficiency of the chosen humidity exchanger, which was selected by analyzing the results of the preceding simulation, comparing study data with measurement data from the Korea Testing Laboratory (KTL). The resulting analysis revealed that the rectangular element showed the lowest level of efficiency in both heating and cooling, while the curved element showed the highest level of efficiency in both heating and cooling.

Present State of CFD Softwares Application for Launch Vehicle Analysis (발사체 해석을 위한 CFD 소프트웨어 적용 현황)

  • Jeong, Hwanghui;Kim, Jae Yeol;Shin, Jae-Ryul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.71-80
    • /
    • 2020
  • Before we develop LVAFoam, a CFD software for launch vehicle analysis, we conducted a survey on other CFD softwares. We looked at in-house code and commercial CFD software of other countries that were used as a simulation of launch vehicle's combustor, turbopump and external flow. This research included in-house code solvers, developed by NASA, Mississippi State University, DLR, Bertin Technologies, CNES, CERFACS, and JAXA as well as commercial CFD software from FLUENT, CFX, Advance/FrontFlow/red, GASP, CRUNCH CFD, CFD-ACE+, FINETM/Turbo, STAR-CCM+. The simulation cases of launch vehicle analysis from each commercial softwares and introduction of the LVAFoam were presented.

Investigation of the Performance of Anti-Icing System of a Rotorcraft Engine Air Intake (회전익기 공기흡입구 주위 방빙장치 성능 해석)

  • Ahn, Gook-Bin;Jung, Ki-Young;Jung, Sung-Ki;Shin, Hun-Bum;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.253-260
    • /
    • 2013
  • Ice accretions on the surface around a rotorcraft air intake can deteriorate the safety of rotorcraft due to the engine performance degradation. The computational simulation based on modern CFD methods can be considered extremely valuable in analyzing icing effects before exact but very expensive icing wind tunnel or in-flight tests are conducted. In this study the range and amount of ice on the surface of anti-icing equipment are investigated for heat-on and heat-off modes. It is demonstrated through the computational prediction and the icing wind tunnel test that the maximum mass and height of ice of heat-on mode are reduced about 80% in comparison with those of heat-off mode.

Reliability Based Design Optimization for the Pressure Recovery of Supersonic Double-Wedge Inlet (이중 쐐기형 초음속 흡입구의 압력회복률에 대한 신뢰성 기반 최적설계)

  • Lee, Chang-Hyuck;Ahn, Joong-Ki;Bae, Hyo-Gil;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1067-1074
    • /
    • 2010
  • In this study, RBDO(Reliability Based Design Optimization) was performed for a supersonic double-wedge inlet. By considering uncertainty of design with given design space, the pressure recovery was transformed into the probabilistic constraint while the inlet drag was considered as a deterministic objective function. To save computational analysis cost and to search good design space, Latin-Hypercube design of experiment and the Kriging model were incorporated and then RBDO was performed. Monte-Carlo simulation was performed to verify the accuracy of AFORM(Advanced First Order Reliability Method). It was found that AFORM result agreed very well with the Monte-Carlo simulation result. The system reliability was guaranteed by considering uncertainty of the design variables. In case of considering diverse uncertainty of system design, RBDO was found to be useful.

Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor (고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션)

  • Ko, Jo-Han;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.

CFD Simulation of Air-particle Flow for Predicting the Collection Efficiency of a Cyclone Separator in Mud Handling System (Mud handling system 내 cyclone separator의 집진효율 추정을 위한 공기-분체의 CFD 시뮬레이션)

  • Jeon, Gyu-Mok;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.42-49
    • /
    • 2019
  • Drilling mud was used once in the step of separating the gas and powder they were transported to a surge tank. At that time, the fine powder, such as dust that is not separated from the gas, is included in the gas that was separated from the mud. The fine particles of the powder are collected to increase the density of the powder and prevent air pollution. To remove particles from air or another gas, a cyclone-type separator generally can be used with the principles of vortex separation without using a filter system. In this study, we conducted numerical simulations of air-particle flow consisting of two components in a cyclone separator in a mud handling system to investigate the characteristics of turbulent vortical flow and to evaluate the collection efficiency using the commercial software, STAR-CCM+. First, the single-phase air flow was simulated and validated through the comparison with experiments (Boysan et al., 1983) and other CFD simulation results (Slack et al., 2000). Then, based on one-way coupling simulation for air and powder particles, the multi-phase flow was simulated, and the collection efficiency for various sizes of particles was compared with the experimental and theoretical results.

Effect of Ground Boundary Condition on Evaluation of Blast Resistance Performance of Precast Arch Structures (지반경계조건이 프리캐스트 아치구조물의 폭발저항성능 평가에 미치는 영향)

  • Lee, Jungwhee;Choi, Keunki;Kim, Dongseok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.287-296
    • /
    • 2019
  • In this study, the effect of ground boundary conditions on the evaluation of blast resistance performance of precast arch structures was evaluated by a numerical analysis method. Two types of boundary conditions, namely, fixed boundary conditions and a perfectly matched layer (PML) were applied to numerical models. Blast loads that were much higher than the design load of the target structure were applied to compare the effects of the boundary conditions. The distribution and path of the ground explosion pressure, structural displacement, fracture of concrete, stress of concrete, and reinforcing bars were compared according to the ground boundary condition settings. As a result, the reflecting pressure shock wave at the ground boundaries could be effectively eliminated using PML elements; furthermore, the displacement of the foundation was reduced. However, no distinct difference could be observed in the overall structural behavior including the fracture and stress of the concrete and rebar. Therefore, when blast simulations are performed in the design of protective structures, it is rational to apply the fixed boundary condition on the ground boundaries as conservative design results can be achieved with relatively short computation times.

Molecular Dynamics Simulation on the Thermal Boundary Resistance of a Thin-film and Experimental Validation (분자동역학을 이용한 박막의 열경계저항 예측 및 실험적 검증)

  • Suk, Myung Eun;Kim, Yun Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.103-108
    • /
    • 2019
  • Non-equilibrium molecular dynamics simulation on the thermal boundary resistance(TBR) of an aluminum(Al)/silicon(Si) interface was performed in the present study. The constant heat flux across the Si/Al interface was simulated by adding the kinetic energy in hot Si region and removing the same amount of the energy from the cold Al region. The TBR estimated from the sharp temperature drop at the interface was independent of heat flux and equal to $5.13{\pm}0.17K{\cdot}m^2/GW$ at 300K. The simulation result was experimentally confirmed by the time-domain thermoreflectance technique. A 90nm thick Al film was deposited on a Si(100) wafer using an e-beam evaporator and the TBR on the film/substrate interface was measured using the time-domain thermoreflectance technique based on a femtosecond laser system. A numerical solution of the transient heat conduction equation was obtained using the finite difference method to estimate the TBR value. Experimental results were compared to the prediction and discussions on the nanoscale thermal transport phenomena were made.

Analysis of Cable Protection of Duct in Lightning and HIRF Environment of UAM Aircraft and a Proposal for Certification Guidance (UAM 항공기 낙뢰 및 HIRF 환경에서 덕트의 케이블 보호 성능 분석 및 인증기술에 관한 연구)

  • Kim, Dong-Hyeon;Jo, Jae-Hyeon;Kim, Yun-Gon;Lee, Hakjin;Myong, Rho-Shin
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.23-34
    • /
    • 2022
  • Cities around the world are increasing their demand for Urban Air Mobility (UAM) aircraft due to traffic congestion with population concentration. Aircraft with various shapes depending on fixed-wing and propulsion systems, are being prepared for commercialization. Airworthiness certification is required as it is a manned transportation vehicle that flies in the city center and transports people on board. UAM aircraft are vulnerable to lightning and HIRF environments due to the increasing use of composite materials, the use of electric motors, and use of electronic equipment. Currently, the development of certification technology, guidelines, and requirements in lightning and HIRF environments for UAM aircraft is incomplete. In this study, the certification procedures for lightning and HIRF indirect impacts of rotorcraft shown in AC 20-136B and AC 20-158A issued by the Federal Aviation Administration (FAA), were verified and applied to the computerized simulation of UAM aircraft. The impact of lightning and HIRF on ducted fan UAM aircraft was analyzed through computerized simulation, and the basis for establishing practical guidelines for certification of UAM aircraft to be operated in the future is presented.

Effect of Internal Flow Guide in Pintle Tip on Pintle Injector Thruster Combustion (핀틀 인젝터의 팁 내부 유동 가이드가 연소 성능에 미치는 영향)

  • Lee, Keonwoong;Nam, Jeonsoo;Radhakrishnan, Kanmaniraja;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.703-709
    • /
    • 2020
  • Pintle injector is known to have been adopted as injector of Lunar Module Descent Engine (LMDE) and contributed to success of the Apollo program and recently used in merlin engine. In this study, 500N Lab-Scale pintle injector thruster was manufactured and the combustion experiment with LOx/GCH4 was conducted. However, the proto-type thruster was showed some problems, such as low combustion efficiency and melting of pintle tip. To solve these problems, the flow guide in pintle tip was suggested through the CFD simulation. After addition of flow guide module, the combustion efficiency increased and pintle tip did not melt until the end of combustion.