• 제목/요약/키워드: 전사방식 광조형

검색결과 12건 처리시간 0.023초

전사방식 마이크로광조형의 경화 단면형상 예측 (Prediction of Cured Cross-sectional Image in Projection Microstereolithography)

  • 김성현;박인백;하영명;이석희
    • 한국정밀공학회지
    • /
    • 제27권4호
    • /
    • pp.102-108
    • /
    • 2010
  • Projection microstereolithography is a process of fabricating a micro-structure by using dynamic mask such as digital micromirror device(DMD). DMD shapes the beam into cross-sectional image of structure. Photocurable resin is cured by the beam and stacked layer on top of layer. It is difficult to deliver the beam from the DMD to the photocurable resin without any distortions. We assume that the beam exposed to the resin by 1 pixel of DMD has Gaussian distribution, so the shaped beam reflected by the DMD affects its neighboring area. Curing pattern corresponding to a cross-sectional images is predicted by superposition of pixels of Gaussian distribution and it is similar to cured shape.

전사방식 마이크로광조형을 이용한 배열 형태 미세 구조물 가공 (Fabrication of Microstructure Array using the Projection Microstereolithography System)

  • 최재원;하영명;이석희
    • 한국정밀공학회지
    • /
    • 제24권8호통권197호
    • /
    • pp.138-143
    • /
    • 2007
  • Microstereolithography technology is similar to the conventional stereolithography process and enables to fabricate a complex 3D microstructure. This is divided into scanning and projection type according to aiming at precision and fabrication speed. The scanning MSL fabricates each layer using position control of laser spot on the resin surface, whereas the projection MSL fabricates one layer with one exposure using a mask. In the projection MSL, DMD used to generate dynamic pattern consists of $1024{\times}768$ micromirrors which have $13.68{\mu}m$ per side. The fabrication range and resolution are determined by the field of view of the DMD and the magnification of the projection lens. If using the projection lens with high power, very fine microstructures can be fabricated. In this paper, the projection MSL system adapted to a large surface for array-type fabrication is presented. This system covers the meso range, which is defined as the intermediate range between micro and macro, with a resolution of a few ${\mu}m$. The fabrication of array-type microstructures has been demonstrated to verify the performance of implemented system.

규제액면기법의 전사방식 광조형 시스템을 위한 이형력 감소 (Reducing Separation Force for Projection Stereolithography based on Constrained Surface Technique)

  • 김혜정;하영명;박인백;김민섭;조광호;이석희
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.1001-1006
    • /
    • 2013
  • Projection-based stereolithography is divided into constrained-surface and free-surface type according to controlling liquid layer. The constrained-surface type has a uniform layer thickness due to the use of a projection window, which covers the pattern generator such as liquid crystal display. However, the adhered resin on the projection window causes trouble and requires great separation force when the cured layer is separated from the window. To minimize the separation force, we developed a system to measure the separation force. The influence of material covering the pattern generator and the resin temperature is investigated in the system. Several structures according to the resin temperature and the velocity of z-axis elevation are compared. As a result, the fabrication condition to minimize the separation force reduces the process time.

LCD 와 가시광선 LED 기반의 광조형 시스템을 위한 수지의 경화 특성 (Curing Characteristics for Projection Stereolithography based on LCD and Visible LED)

  • 김가영;하영명;박인백;김민섭;조광호;이석희
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.878-884
    • /
    • 2013
  • Stereolithography can be classified into two main categories according to the cross-sectional shape: scanning type and projection type. Projection stereolithography has significant advantages when making a layer using a single patterned beam, and results in improved speed and accuracy. To implement relatively low-cost projection stereolithography, we developed a system using a commercially available resin, which cures on exposure to visible light. The optimum photoinitiator was investigated, as well as the mixing ratio. The viscosity, shrinkage, curing depth and tensile strength were evaluated through several experiments on fabricated three-dimensional structures, and thus an optimal resin selection system was developed.