• Title/Summary/Keyword: 전북

Search Result 3,575, Processing Time 0.026 seconds

Adaptability of the high first pod height, shattering-resistant soybean cultivar 'Saegeum' to mechanized harvesting (고착협 내탈립 기계수확 적응 장류·두부용 콩 품종 '새금')

  • Kim, Hyun Tae;Han, Won Young;Lee, Byung Won;Ko, Jong Min;Lee, Yeong Hoon;Baek, In Youl;Yun, Hong Tai;Ha, Tae Joung;Choi, Man Soo;Kang, Beom Kyu;Kim, Hyun Yeong;Seo, Jeong Hyun;Kim, Hong Sik;Shin, Sang Ouk;Oh, Jae Hyun;Kwak, Do Yeon;Seo, Min Jeong;Song, Yoon Ho;Jang, Eun Kyu;Yun, Geon Sik;Kang, Yeong Sik;Lee, Ji Yun;Shin, Jeong Ho;Choi, Kyu Hwan;Kim, Dong Kwan;Yang, Woo Sam
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.496-503
    • /
    • 2019
  • The soybean cultivar, 'Saegeum', has been developed for preparing soy-paste and tofu. The soybean cultivars 'Daepung' and 'SS98207-3SSD-168' were crossed in 2003 to obtain 'Saegeum'. Single seed descent method was used to advance the generation from F3 to F5, and the plant lines with promising traits were selected from F6 to F7 by pedigree method. The preliminary yield (PYT) and advanced yield trials (AYT) were conducted from 2009 to 2010, and the regional yield trial (RYT) was conducted in 12 regions between 2011 and 2013. The morphological characteristics of 'Saegeum' were as follows: determinate plant type, white flower, tawny pubescence color, and brown pod color. Flowering and maturity dates were August 2, XXXX and October 17, XXXX, respectively. Plant height, first pod height, number of nodes, number of branches, and number of pods were 79 cm, 18 cm, 16, 2.3, and 44, respectively. The seed characteristics of 'Saegeum' were as follows: yellow spherical shape, yellow hilum, and the 100-seed weight was 25.4 g. 'Saegeum' was resistant to bacterial pustule and SMV in the field test, and its lodging resistance was mildly strong, whereas its shattering resistance was excellent. The ability of this cultivar to be processed into tofu, soybean malt, and other fermented products was comparable with that of 'Daewonkong'. The yield of 'Saegeum' in the adaptable regions was 3.02 ton ha-1. Thus, 'Saegeum' is adaptable to mechanized harvesting because of its high first pod height, as well as lodging and shattering resistance. (Registration number: 5929)

The Advancement of Underwriting Skill by Selective Risk Acceptance (보험Risk 세분화를 통한 언더라이팅 기법 선진화 방안)

  • Lee, Chan-Hee
    • The Journal of the Korean life insurance medical association
    • /
    • v.24
    • /
    • pp.49-78
    • /
    • 2005
  • Ⅰ. 연구(硏究) 배경(背景) 및 목적(目的) o 우리나라 보험시장의 세대가입율은 86%로 보험시장 성숙기에 진입하였으며 기존의 전통적인 전업채널에서 방카슈랑스의 도입, 온라인전문보험사의 출현, TM 영업의 성장세 等멀티채널로 진행되고 있음 o LTC(장기간병), CI(치명적질환), 실손의료보험 등(等)선 진형 건강상품의 잇따른 출시로 보험리스크 관리측면에서 언더라이팅의 대비가 절실한 시점임 o 상품과 마케팅 等언더라이팅 측면에서 매우 밀접한 영역의 변화에 발맞추어 언더라이팅의 인수기법의 선진화가 시급히 요구되는 상황하에서 위험을 적절히 분류하고 평가하는 선진적 언더라이팅 기법 구축이 필수 적임 o 궁극적으로 고객의 다양한 보장니드 충족과 상품, 마케팅, 언더라이팅의 경쟁력 강화를 통한 보험사의 종합이익 극대화에 기여할 수 있는 방안을 모색하고자 함 Ⅱ. 선진보험시장(先進保險市場)Risk 세분화사례(細分化事例) 1. 환경적위험(環境的危險)에 따른 보험료(保險料) 차등(差等) (1) 위험직업 보험료 할증 o 미국, 유럽등(等) 대부분의 선진시장에서는 가입당시 피보험자의 직업위험도에 따라 보험료를 차등 적용중(中)임 o 가입하는 보장급부에 따라 직업 분류방법 및 할증방식도 상이하며 일반사망과 재해사망,납입면제, DI에 대해서 별도의 방법을 사용함 o 할증적용은 표준위험율의 일정배수를 적용하여 할증 보험료를 산출하거나, 가입금액당 일정한 추가보험료를 적용하고 있음 - 광부의 경우 재해사망 가입시 표준위험율의 300% 적용하며, 일반사망 가입시 $1,000당 $2.95 할증보험료 부가 (2) 위험취미 보험료 할증 o 취미와 관련 사고의 지속적 다발로 취미활동도 위험요소로 인식되어 보험료를 차등 적용중(中)임 o 할증보험료는 보험가입금액당 일정비율로 부가(가입 금액과 무관)하며, 신종레포츠 등(等)일부 위험취미는 통계의 부족으로 언더라이터가 할증율 결정하여 적용함 - 패러글라이딩 년(年)$26{\sim}50$회(回) 취미생활의 경우 가입금액 $1,000당 재해사망 $2, DI보험 8$ 할증보험료 부가 o 보험료 할증과는 별도로 위험취미에 대한 부담보를 적용함. 위험취미 활동으로 인한 보험사고 발생시 사망을 포함한 모든 급부에 대한 보장을 부(不)담보로 인수함. (3) 위험지역 거주/ 여행 보험료 할증 o 피보험자가 거주하고 있는 특정국가의 임시 혹은 영구적 거주시 기후위험, 거주지역의 위생과 의료수준, 여행위험, 전쟁과 폭동위험 등(等)을 고려하여 평가 o 일반사망, 재해사망 등(等)보장급부별로 할증보험료 부가 또는 거절 o 할증보험료는 보험全기간에 대해 동일하게 적용 - 러시아의 경우 가입금액 $1,000당 일반사망은 2$의 할증보험료 부가, 재해사망은 거절 (4) 기타 위험도에 대한 보험료 차등 o 비행관련 위험은 세가지로 분류(항공운송기, 개인비행, 군사비행), 청약서, 추가질문서, 진단서, 비행이력 정보를 바탕으로 할증보험료를 부가함 - 농약살포비행기조종사의 경우 가입금액 $1,000당 일반사망 6$의 할증보험료 부가, 재해사망은 거절 o 미국, 일본등(等)서는 교통사고나 교통위반 관련 기록을 활용하여 무(無)사고운전자에 대해 보험료 할인(우량체 위험요소로 활용) 2. 신체적위험도(身體的危險度)에 따른 보험료차등(保險料差等) (1) 표준미달체 보험료 할증 1) 총위험지수 500(초과위험지수 400)까지 인수 o 300이하는 25점단위, 300점 초과는 50점 단위로 13단계로 구분하여 할증보험료를 적용중(中)임 2) 삭감법과 할증법을 동시 적용 o 보험금 삭감부분만큼 할증보험료가 감소하는 효과가 있어 청약자에게 선택의 기회를 제공할수 있으며 고(高)위험 피보험자에게 유용함 3) 특정암에 대한 기왕력자에 대해 단기(Temporary)할증 적용 o 질병성향에 따라 가입후 $1{\sim}5$년간 할증보험료를 부가하고 보험료 할증 기간이 경과한 후에는 표준체보험료를 부가함 4) 할증보험료 반환옵션(Return of the extra premium)의 적용 o 보험계약이 유지중(中)이며, 일정기간 생존시 할증보험료가 반환됨 (2) 표준미달체 급부증액(Enhanced annuity) o 영국에서는 표준미달체를 대상으로 연금급부를 증가시킨 증액형 연금(Enhanced annuity) 상품을 개발 판매중(中)임 o 흡연, 직업, 병력 등(等)다양한 신체적, 환경적 위험도에 따라 표준체에 비해 증액연금을 차등 지급함 (3) 우량 피보험체 가격 세분화 o 미국시장에서는 $8{\sim}14$개 의적, 비(非)의적 위험요소에 대한 평가기준에 따라 표준체를 최대 8개 Class로 분류하여 할인보험료를 차등 적용 - 기왕력, 혈압, 가족력, 흡연, BMI, 콜레스테롤, 운전, 위험취미, 거주지, 비행력, 음주/마약 등(等) o 할인율은 회사, Class, 가입기준에 따라 상이(최대75%)하며, 가입연령은 최저 $16{\sim}20$세, 최대 $65{\sim}75$세, 최저보험금액은 10만달러(HIV검사가 필요한 최저 금액) o 일본시장에서는 $3{\sim}4$개 위험요소에 따라 $3{\sim}4$개 Class로 분류 우량체 할인중(中)임 o 유럽시장에서는 영국 등(等)일부시장에서만 비(非)흡연할인 또는 우량체할인 적용 Ⅲ. 국내보험시장(國內保險市場) 현황(現況)및 문제점(問題點) 1. 환경적위험도(環境的危險度)에 따른 가입한도제한(加入限度制限) (1) 위험직업 보험가입 제한 o 업계공동의 직업별 표준위험등급에 따라 각 보험사 자체적으로 위험등급별 가입한도를 설정 운영중(中)임. 비(非)위험직과의 형평성, 고(高)위험직업 보장 한계, 수익구조 불안정화 등(等)문제점을 내포하고 있음 - 광부의 경우 위험1급 적용으로 사망 최대 1억(億), 입원 1일(日) 2만원까지 제한 o 금융감독원이 2002년(年)7월(月)위험등급별 위험지수를 참조 위험율로 인가하였으나, 비위험직은 70%, 위험직은 200% 수준으로 산정되어 현실적 적용이 어려움 (2) 위험취미 보험가입 제한 o 해당취미의 직업종사자에 준(準)하여 직업위험등급을 적용하여 가입 한도를 제한하고 있음. 추가질문서를 활용하여 자격증 유무, 동호회 가입등(等)에 대한 세부정보를 입수하지 않음 - 패러글라이딩의 경우 위험2급을 적용, 사망보장 최대 2 억(億)까지 제한 (3) 거주지역/ 해외여행 보험가입 제한 o 각(各)보험사별로 지역적 특성상 사고재해 다발 지역에 대해 보험가입을 제한하고 있음 - 강원, 충청 일부지역 상해보험 가입불가 - 전북, 태백 일부지역 입원급여금 1일(日)2만원이내 o 해외여행을 포함한 해외체류에 대해서는 일정한 가입 요건을 정하여 운영중(中)이며, 가입한도 설정 보험가입을 제한하거나 재해집중보장 상품에 대해 거절함 - 러시아의 경우 단기체류는 위험1급 및 상해보험 가입 불가, 장기 체류는 거절처리함 2. 신체적위험도(身體的危險度)에 따른 인수차별화(引受差別化) (1) 표준미달체 인수방법 o 체증성, 항상성 위험에 대한 초과위험지수를 보험금삭감법으로 전환 사망보험에 적용(최대 5년(年))하여 5년(年)이후 보험 Risk노출 심각 o 보험료 할증은 일부 회사에서 주(主)보험 중심으로 사용중(中)이며, 총위험지수 300(8단계)까지 인수 - 주(主)보험 할증시 특약은 가입 불가하며, 암 기왕력자는 대부분 거절 o 신체부위 39가지, 질병 5가지에 대해 부담보 적용(입원, 수술 등(等)생존급부에 부담보) (2) 비(非)흡연/ 우량체 보험료 할인 o 1999년(年)최초 도입 이래 $3{\sim}4$개의 위험요소로 1개 Class 운영중(中)임 S생보사의 경우 비(非)흡연우량체, 비(非)흡연표준체의 2개 Class 운영 o 보험료 할인율은 회사, 상품에 따라 상이하며 최대 22%(영업보험료기준)임. 흡연여부는 뇨스틱을 활용 코티닌테스트를 실시함 o 우량체 판매는 신계약의 $2{\sim}15%$수준(회사의 정책에 따라 상이) Ⅳ. 언더라이팅 기법(技法) 선진화(先進化) 방안(方案) 1. 직업위험도별 보험료 차등 적용 o 생 손보 직업위험등급 일원화와 연계하여 3개등급으로 위험지수개편, 비위험직 기준으로 보험요율 차별적용 2. 위험취미에 대한 부담보 적용 o 해당취미를 원인으로 보험사고(사망포함) 발생시 부담보 제도 도입 3. 표준미달체 인수기법 선진화를 통한 인수범위 대폭 확대 o 보험료 할증법 적용 확대를 통한 Risk 헷지로 총위험지수 $300{\rightarrow}500$으로 확대(거절건 최소화) 4. 보험료 할증법 보험금 삭감 병행 적용 o 삭감기간을 적용한 보험료 할증방식 개발, 고객에게 선택권 제공 5. 기한부 보험료할증 부가 o 위암, 갑상선암 등(等)특정암의 성향에 따라 위험도가 높은 가입초기에 평준할증보험료를 적용하여 인수 6. 보험료 할증법 부가특약 확대 적용, 부담보 병행 사용 o 정기특약 등(等)사망관련 특약에 할증법 확대, 생존급부 특약은 부담보 7. 표준체 고객 세분화 확대 o 콜레스테롤, HDL 등(等)위험평가요소 확대를 통한 Class 세분화 Ⅴ. 기대효과(期待效果) 1. 고(高)위험직종사자, 위험취미자, 표준미달체에 대한 보험가입 문호개방 2. 보험계약자간 형평성 제고 및 다양한 고객의 보장니드에 부응 3. 상품판매 확대 및 Risk헷지를 통한 수입보험료 증대 및 사차익 개선 4. 본격적인 가격경쟁에 대비한 보험사 체질 개선 5. 회사 이미지 제고 및 진단 거부감 해소, 포트폴리오 약화 방지 Ⅵ. 결론(結論) o 종래의 소극적이고 일률적인 인수기법에서 탈피하여 피보험자를 다양한 측면에서 위험평가하여 적정 보험료 부가와 합리적 가입조건을 제시하는 적절한 위험평가 수단을 도입하고, o 언더라이팅 인수기법의 선진화와 함께 언더라이팅 인력의 전문화, 정보입수 및 시스템 인프라의 구축 등이 병행함으로써, o 보험사의 사차손익 관리측면에서 뿐만 아니라 보험시장 개방 및 급변하는 보험환경에 대비한 한국 생보언더라이팅 경쟁력 강화 및 언더라이터의 글로벌화에도 크게 기여할 것임.

  • PDF

The Status, Problems and Countermeasure of Direct Rice Seeding in Honam Province - On Weed control - (호남지방(湖南地方) 직파재배(直播栽培)의 현황(現況), 문제점(問題點) 및 대책(對策) - 잡초방제적(雜草防除的) 측면(側面)에서 -)

  • Ryang, Hwan-Seung;Kim, Jong-Seog
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.271-291
    • /
    • 1992
  • This study was conducted to survey the situation of direct rice seeding in Honam province in Korea to investigate problems and seek countermeasure of weed control in direct rice seeding. The total area of direct rice seeding in the south-western part of Korea (Chonbuk, Chonnam, and Chungnam) was 1650.8ha (732.1ha for direct seeding in dry field and 918.7ha for direct seeding in flooding field) in 1992. The followings are summary of the study. 1. In case of direct rice seeding in dry field, butachlor EC and G at 3 to 5 DAS was mostly selected by farmers to control weeds in dry field. Benthiocarb or chlornitrofen was also used in few cases. At 10 to 14 DAS just before rice emergence, tank misture of butachlor EC and paraquat was treated by some farmers. At 35 to 40 days, after flooding mixture of sulfonylurea derivatives was sequentially applied. Surviving weeds including barnyardgrass were finally controlled by mixture of bentazon+quinclorac WP foliage application. 2. In case of direct rice seeding in flooding field, weed control were mostly unsuccessful partially due to wrong selection of herbicide and missing the optimum application time. Three relatively successful weed control in the survey were summarized as follows. 1) Oxadiazon EC, butachlor or benthiocarb were treated just after puddling(5 to 7 days before seeding). then mixture of bentazone+quinclorac WP or sulfonylurea derivatives was sequently applied to control remaining weeds at 20 days after seeding. 2) Mixtures of bensulfuronmethyl+dimepiperate G, pyrazosulfuronethyl+molinate G, or bensulfuronmethyl+mefenacet+dymron G were applied at 11 days after puddling when barnyardgrass were at 2.0 leaf stage. Phytotoxicity was not found in case of mixture of bensulfuronmethyl+dimepiperate G but found in the other two cases but disappeared later. 3) Mixtures of bensulfuronmethyl+quinclorac G., pyrazosulfuronethyl+quinclorac G or betazone and quinclorac G were treated after 18 to 20 days after puddling when barnyardgrass was within 3.0 leaf stage. It showed good weed control in both annuals and perrenials without phytotoxicity. On the contrary, other sulfonylurea derivatives such as middle periodic herbicide showed poor weed control against barnyardgrass, so that sequential treatment of bentazone+quinclorac WP mixture was required. 3. Herbicidal characteristics and optimum application time of 45 rigistered herbicides in Korea were analyzed to discover new substitute for quinclorac mixture, that showed excellent weed control against barnyardgrass at its 3 leaf stage or older. The analysis revealed that 70% of herbicides were for preemergence and the others were post periodic herbicide. Most farmers favor to apply herbicide when rice seedlings completely rooted, at this time barnyardgrass are at 2.5-3.0 leaf stage. Therefore herbicide of which optimum application time had long is required. In this study. 6 middle periodic herbicides among sulfonylurea derivatives and 2 quinclorac mixture were selected and evaluated their weeding spectrums at different leaf stage of barnyardgrass in both soil application in flooding condition and foliage application in dry paddy field. The order of weeding spectrum in magnitude was as follows : bentazone+quinclorac WP> bentazone + quinclorac G>bensulfuronmethyl + quinclorac G>pyrazosulfuronethyl + quinclorac G> pyrazosulfuronethyl + Molinate G>bensulfuronmethyl + mefenacet + dymron G>bensulfuronmethyl + mefenacet G>bensulfuron methyl+benthiocarb G. The above results coincided with that of the survey. In conclusion, there is no proper substitute for quinclorac mixrure, which can control barnyardgrass at 3.0 leaf stage or even older. Therefore quinclorac should be supplied continuously to farmers in order to anchor direct rice seeding in Korea. Author suggested the followings to eastablish direct rice seeding technology effectively and quickly : 1) A tentatively named "The research committee for direct rice seeding" which was composed of farmers. researchers and goberment. should be eastablished to cooperate effectively. 2) Development of a pricise direct rice seeding machine for both dry and flooding paddy field. which is workable regardless of condition and varieties of seeds. 3) Study on protecting rice seed and seedling from sparrows. 4) Systematic studies of weed control techniques in direct rice seeding to standardize herbicide application. 5) Studies on farm-land reformation. techniques of precise land preparation. and direct rice seeding using an airplane.

  • PDF

Soil Classification of Paddy Soils by Soil Taxonomy (미국신분류법(美國新分類法)에 의(依)한 답토양의 분류(分類)에 관한 연구)

  • Joo, Yeong-Hee;Shin, Yong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 1979
  • According to Soil Taxonomy which has been developed over the past 20 years in the soil conservation service of the U. S. D. A, Soils in Korea are classified. This system is well suited for the classification of the most of soils. But paddy field soils have some difficulties in classification because Soil Taxonomy states no proposals have yet been developed for classifying artificially irrigated soils. This paper discusses some problems in the application of Taxonomy and suggestes the classification of paddy field soils in Korea. Following is the summary of the paper. 1. Anthro aquic, Aquic Udipsamments : The top soils of these soils are saturated with irrigated water at some time of year and have mottles of low chroma(2 or less) more than 50cm of the soil surface. (Ex. Sadu, Geumcheon series) 2. Anthroaquic Udipsamments : These sails are like Anthroaquic, Aquic Udipsamments except for the mottles of low chroma within 50cm of the soil surface. (Ex. Baegsu series) 3. Halic Psammaquents : These soils contain enough salts as distributed in the profile that they interfere with the growth of most crop plants and located on the coastal dunes. The water table fluctuates with the tides. (Ex. Nagcheon series) 4. Anthroaquic, Aquic Udifluvents : They have some mottles that have chroma of 2 or less in more than 50cm of the surface. The upper horizon is saturated with irrigated water at sometime. (Ex. Maryeong series) 5. Anthro aquic Udifluvents : These soils are saturated with irrigated water at some time of year and have mottles of low chroma(2 or less) within 50cm of the surface soils. (Ex. Haenggog series) 6. Fluventic Haplaquepts : These soils have a content of organic carbon that decreases irregularly with depth and do not have an argillic horizon in any part of the pedon. Since ground water occur on the surface or near the surface, they are dominantly gray soils in a thick mineral regolith. (Ex Baeggu, Hagseong series) 7. Fluventic Thapto-Histic Haplaquepts : These soils have a buried organic matter layer and the upper boundary is within 1m of the surface. Other properties are same as Fluventic Haplaquepts. (Ex. Gongdeog, Seotan series) 8. Fluventic Aeric Haplaquepts : These soils have a horizon that has chroma too high for Fluventic Haplaquepts. The higher chroma is thought to indicate either a shorter period of saturation of the whole soils with water or some what deeper ground water than in the Fluventic Haplaquepts. The correlation of color with soil drainage classes is imperfect. (Ex. Mangyeong, Jeonbug series) 9. Fluventic Thapto-Histic Aeric Haplaquepts : These soils are similar to Fluventic Thapto Histic Haplaquepts except for the deeper ground water. (Ex. Bongnam series) 10. Fluventic Aeric Sulfic Haplaquepts : These soils are similar to Fluventic Aeric Haplaquepts except for the yellow mottles and low pH (<4.0) in some part between 50 and 150cm of the surface. (Ex. Deunggu series) 11. Fluventic Sulfaquepts : These soils are extremely acid and toxic to most plant. Their horizons are mostly dark gray and have yellow mottles of iron sulfate with in 50cm of the soil surface. They occur mainly in coastal marshes near the mouth of rivers. (Ex. Bongrim, Haecheog series) 12. Fluventic Aeric Sulfaquepts : They have a horizon that has chroma too high for Fluventic Sulfaquepts. Other properties are same as Fluventic Sulfaquepts. (Ex. Gimhae series) 13. Anthroaquic Fluvaquentic Eutrochrepts : These soils have mottles of low chroma in more than 50cm of the surface due to irrigated water. The base saturation is 60 percent or more in some subhroizon that is between depth of 25 and 75cm below the surface. (Ex. Jangyu, Chilgog series) 14. Anthroaquic Dystric Fluventic Eutrochrepts : These soils are similar to Anthroaquic Fluvaquentic Eutrochrepts except for the low chroma within 50cm of the surface. (Ex. Weolgog, Gyeongsan series) 15. Anthroaquic Fluventic Dystrochrepts : These soils have mottles that have chroma of 2 or less within 50cm of the soil surface due to artificial irrigation. They have lower base saturation (<60 percert) in all subhorizons between depths of 25 and 75cm below the soil surface. (Ex. Gocheon, Bigog series) 16. Anthro aquic Eutrandepts : These soils are similar to Anthroaquic Dystric Fluventic Eutrochrepts except for lower bulk density in the horizon. (Ex. Daejeong series) 17. Anthroaquic Hapludalfs : These soils' have a surface that is saturated with irrigated water at some time and have chroma of 2 or less in the matrix and higher chroma of mottles within 50cm of the surface. (Ex. Hwadong, Yongsu series) 18. Anthro aquic, Aquic Hapludalfs : These soils are similar to Anthro aquic Hapludalfs except for the matrix that has chroma 2 or less and higher chroma of mottles in more than 50cm of the surface. (Ex. Geugrag, Deogpyeong se ries)

  • PDF

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF