• Title/Summary/Keyword: 전립선 경계 검출

Search Result 4, Processing Time 0.02 seconds

Automatic Prostate Segmentation from Ultrasound Images using Morphological Features (형태학적 특징을 이용한 초음파 영상에서의 자동 전립선 분할)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.865-871
    • /
    • 2022
  • In this paper, we propose a method of extracting prostate region using morphological characteristics of ultra-sonic image of prostate. In the first step of the proposed method, the edge area of the prostate image is extracted. The histogram of ultra-sonic image is used to extract base objects to detect the upper edge of prostate region by altering the contrast of the image, then, the lower edges of the extracted base objects are connected by using monotone cubic spline interpolation to extract the upper edge. Step 2, Otsu's binarization is applied to the region under the extracted upper edge of the prostate ultra-sonic image to extract the lower edge of prostate. In the last step, the upper and the lower edges are connected to extract prostate region and by comparing the extracted region of prostate with the one measured manually, the result showed that the morphological characteristics of prostate in ultrasonic image can be utilized to extract the prostate region.

Detecting the Prostate Boundary with Gabor Texture Features Average Shape Model of TRUS Prostate Image (TRUS 전립선 영상에서 가버 텍스처 특징 추출과 평균형상모델을 적용한 전립선 경계 검출)

  • Kim, Hee Min;Hong, Seok Won;Seo, Yeong Geon;Kim, Sang Bok
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.717-725
    • /
    • 2015
  • Prostate images have been used in the diagnosis of prostate using TRUS images being relatively cheap. Ultrasound images are recorded with 3 dimension and one diagnostic exam is made with a number of the images. A doctor can see 2 dimensional images on the monitor sequentially and 3 dimensional ones to diagnose a disease. To display the images, 2-d images are used with raw 2-d ones, but 3-d images need to be segmented by the prostates and their backgrounds to be seen from different angles and with cut images of inner side. Especially on detecting the boundary, the ones in the middle of all images are easy to find the boundary but the base and apex of the images are hard to do it since there are lots of uncertain boundary. So, in this paper we propose the method that applies an average shape model and detects the boundary, and shows its superiority compared to the existing methods with experiments.

Detecting the Prostate Contour in TRUS Image using Support Vector Machine and Rotation-invariant Textures (SVM과 회전 불변 텍스처 특징을 이용한 TRUS 영상의 전립선 윤곽선 검출)

  • Park, Jae Heung;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.675-682
    • /
    • 2014
  • Prostate is only an organ of men. To diagnose the disease of the prostate, generally transrectal ultrasound(TRUS) images are used. Detecting its boundary is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation in TRUS images using Support Vector Machine(SVM) is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. The speckle reduction for preprocessing step has been achieved by using stick filter and top-hat transform has been implemented for smoothing. Gabor filter bank for extraction of rotation-invariant texture features has been implemented. SVM for training step has been used to get each feature of prostate and nonprostate. Finally, the boundary of prostate is extracted. A number of experiments are conducted to validate this method and results shows that the proposed algorithm extracted the prostate boundary with less than 10% relative to boundary provided manually by doctors.

Automatic prostate segmentation method on dynamic MR images using non-rigid registration and subtraction method (동작 MR 영상에서 비강체 정합과 감산 기법을 이용한 자동 전립선 분할 기법)

  • Lee, Jeong-Jin;Lee, Ho;Kim, Jeong-Kon;Lee, Chang-Kyung;Shin, Yeong-Gil;Lee, Yoon-Chul;Lee, Min-Sun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.348-355
    • /
    • 2011
  • In this paper, we propose an automatic prostate segmentation method from dynamic magnetic resonance (MR) images. Our method detects contrast-enhanced images among the dynamic MR images using an average intensity analysis. Then, the candidate regions of prostate are detected by the B-spline non-rigid registration and subtraction between the pre-contrast and contrast-enhanced MR images. Finally, the prostate is segmented by performing a dilation operation outward, and sequential shape propagation inward. Our method was validated by ten data sets and the results were compared with the manually segmented results. The average volumetric overlap error was 6.8%, and average absolute volumetric measurement error was 2.5%. Our method could be used for the computer-aided prostate diagnosis, which requires an accurate prostate segmentation.