• Title/Summary/Keyword: 전리권 감시

Search Result 3, Processing Time 0.022 seconds

Ship-Borne Global Navigation Satellite System (GNSS) for Ionospheric Total Electron Content Monitoring: Preliminary Results from ISABU Experiments (선박 GNSS(Global Navigation Satellite System) 자료를 사용한 전리권 정보 산출 실험: 이사부호 초기 결과)

  • Dong-Hyo Sohn;Byung-Kyu Choi;Junseok Hong;Gyeong Mok Lee;Woo Kyoung Lee;Jong-Kyun Chung;Yosup Park
    • Journal of Space Technology and Applications
    • /
    • v.4 no.3
    • /
    • pp.199-209
    • /
    • 2024
  • In this study, we calculated total electron content (TEC) using ship-borne global navigation satellite system (GNSS) observations and validated the results by comparing the ground-based TEC. GNSS is an effective tool for monitoring the ionosphere as it allows 24-hour observations, is low cost, and is easy to install. However, most GNSS stations are located on land, which leads to a lack of data from the ocean. Therefore, we conducted an experiment collecting GNSS data in the ocean by installing GNSS observation systems aboard the research vessel 'ISABU', operated by the Korea Institute of Ocean Science and Technology. We estimated TEC using GNSS data from July 30 to August 24, 2021. From the results, we confirmed daily and latitudinal variations of TEC as expected. Additionally, we compared the results with TEC derived from nearby ground-based GNSS stations and then verified similar variations. Based on these results, we plan to research ionospheric climatology using long-term data and assess its potential for ongoing ionospheric monitoring.

Ionospheric Responses to the May 2024 G5 Geomagnetic Storm Over Korea, Captured by the Korea Astronomy and Space Science Institute (KASI) Near Real-Time Ionospheric Monitoring System (2024년 5월 G5 지자기 폭풍 때 한반도 상공 전리권 변화: 한국천문연구원 준 실시간 전리권 감시 시스템 관측 결과를 중심으로)

  • Woo Kyoung Lee;Hyosub Kil;Byung-Kyu Choi;Junseok Hong;Se-Heon Jeong;Sujin Kim;Jeong-Heon Kim;Dong-Hyo Sohn;Kyoung-Min Roh;Sung-Moon Yoo;Tae-Yong Yang;Jaeheung Park;Jong-Kyun Chung;Young-Sil Kwak
    • Journal of Space Technology and Applications
    • /
    • v.4 no.3
    • /
    • pp.210-219
    • /
    • 2024
  • This study investigates various ionospheric and thermospheric disturbances around the Korean Peninsula during the G5 geomagnetic storm occurred on May 10, 2024. This level of storm was the first of its magnitude in 21 years, resulting in auroras visible even in South Korea and severe space weather worldwide. The Korea Astronomy and Space Science Institute has been providing ionospheric information over Korea through total electron content (TEC) measurements from the Global Navigation Satellite System (GNSS) and monitoring the impact of ionospheric disturbances on GNSS signals by operating five GNSS scintillation stations in Korea and other countries. During this storm period, large amplitudes of TEC variations were observed over South Korea, along with anomalous TEC enhancements accompanied by strong scintillations at night and persistent TEC depletion on the dayside during the storm's recovery phase. Such daytime TEC depletion disturbances are quite rare, typically occurring only a few times throughout the 11-year solar cycle. While the association of persistent TEC depletion during the daytime with neutral composition disturbances was identified through observations, the causes of TEC enhancement and strong scintillation at night remain unclear. We speculate that the uplift of the ionosphere by storm-induced electric fields is responsible for the TEC enhancement and scintillation, but this hypothesis requires validation based on additional observational data.

Ionospheric Behaviors Over Korea Peninsula During the Super Geomagnetic Storm Using GPS Measurements (GPS 관측자료에 나타난 초대형 지자기 폭풍 기간 동안 한반도 상공 전리층 양상)

  • Chung, Jong-Kyun;Choi, Byung-Kyu;Baek, Jung-Ho;Jee, Geon-Hwa;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.467-478
    • /
    • 2009
  • The super-geomagnetic storms called 2003 Halloween event globally occurred during the period of 29 through 31 which are the following days when the solar flares of X18 class exploded on 28 October 2003. The S4 index from GPS signal strength and the peak electron density ($NmF_2$) from GPS tomography method are analyzed according to the date. The occurrences of the cycle slip and scintillation in the GPS signals are 1,094 and 1,387 on 28 and 29 October, respectively and these values are higher than 604 and 897 on 30 and 31 October. These mean the ionospheric disturbances are not always generated by the period of geomagnetic storm. Therefore, GPS S4 index is useful to monitor the ionospheric disturbances. Behaviors of ionospheric electron density estimated from GPS tomography method are analyzed with the date. At UT = 18 hr, the maximum $NmF_2$ is shown on 28 October. It agrees with $NmF_2$ variation measured from Anyang ionosonde, and the GPS signal are better condition on 30 and 31 October than 28 October. In conclusion, GPS signal condition is relation with geomagnetic activities, and depend upon the variation of the electron density. We will study the long-term data to examine the relationship between the GPS signal quality and the electron density as the further works.