• Title/Summary/Keyword: 전류 효율

Search Result 1,850, Processing Time 0.028 seconds

Electrochemical Characteristics of Lithium Battery Anode Materials Using Petroleum Pitches (석유계 피치를 사용한 리튬전지 음극소재의 전기화학적 특성)

  • Hwang, Jin Woong;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.534-538
    • /
    • 2017
  • In this study, the molecular weight controlled pitches derived from pyrolyzed fuel oil (PFO) were prepared using solvent extraction and were carbonized. Electrochemical characteristics of lithium battery anode materials were investigated using these petroleum pitches. Three pitch samples prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3 h), 4001 (at $400^{\circ}C$ for 1 h) and 4002 (at $400^{\circ}C$ for 2 h). The prepared hexane insoluble pitches were analysed by XRD, TGA, SEM and Gel permeation Chromatography (GPC). The electrochemical characteristics of the PFO-derived pitch as an anode material were investigated by constant current charge/discharge, cyclic voltammetry and electrochemical impedance tests. The coin cell using pitch (4001) and the electrolyte of $LiPF_6$ in organic solvents (EC : DMC = 1 : 1 vol%, VC 3 wt%) has better initial capacity (310 mAh/g) than that of other pitch coin cells. Also, this carbon anode showd a high initial efficiency of 82%, retention rate capability at 2 C/0.1 C of 90% and cycle retention of 85%. It was found that modified pitches improved the cycling and rate capacity performance.

Implementation of Low Frequency Welding Pre-heating System Using Induction Heating (유도가열 기법을 이용한 저주파 용접예열 시스템 구현)

  • Yang, Juyeong;Kim, Soochan;Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • Welding preheating means that the surface of the base material to which the metal is welded before the main welding is heated to a constant temperature. It prevents the cracks of the adjacent influences such as reduction of material hardening degree by controlling the cooling rate, suppression of segregation of impurities, prevention of thermal deformation, and moisture removal. For this reason, it is a necessary operation for high quality welding. Induction heating is an efficient heating method that converts electric energy into heat energy by applying electromagnetic induction phenomenon. Compared with combustion heat generated by gas and liquid, it is clean, stable, and economical as well as rapid heating. It can be heated regardless of the shape, depth and material of the heating body by modifying the shape of the frequency and the coil with a simple structure. In this paper, we implemented a low frequency welding preheating system using induction heating technique and observed the temperature changes of coil resistance, inductance and automotive transmission parts according to the height of each transmission in winding coil for three kinds of automotive transmission parts. We confirmed that the change of current is a very important factor in the low frequency heating.

KSTAR 토카막 플라즈마 가열을 위한 중성 입자빔 입사장치용 이온원 개발 현황

  • Kim, Tae-Seong;Jeong, Seung-Ho;Jang, Du-Hui;Lee, Gwang-Won;In, Sang-Yeol;O, Byeong-Hun;Jang, Dae-Sik;Jin, Jeong-Tae;Song, U-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.559-559
    • /
    • 2013
  • KSTAR (Korea Superconducting Tokamak Advanced Research) 장치는 차세대 에너지원 중의 하나인 핵융합로를 위한 과학기술 기반을 마련하기 위해 개발된 중형급 토카막 실험장치로서 토카막 운전 영역의 확장과 안정성 확보, 정상상태 운전 도달을 위한 방법 연구, 최적화된 플라즈마 상태와 연속 운전 실현 등을 주요 목표로 하고 있다. 이를 위해 핵융합 반응에 의한 점화조건과 가까운 상태로 플라즈마를 가열해주어야 하며, 토카막 장치의 저항가열 이외에도 외부에서 추가 가열이 반드시 필요하다. 중성 입자빔 입사 장치는 현재 토카막에서 사용되고 있는 가열장치 중 가장 신뢰성있는 추가 가열 장치라 할 수 있으며 한국 원자력연구원에서는 1997년부터 KSTAR 토카막 실험 장치에 사용될 중성 입자빔 입사 장치를 개발해왔었다. 중성빔 입사 장치는 크게 이온원, 진공함, 열량계, 진공 펌프, 중성화 장치, 이온덤프와 전자석으로 이루어져 있으며, 이중 이온원은 중성빔의 성능을 좌우하는 핵심적인 장치라 할 수 있다. 최근 한국원자력연구원에서는 2 MW 중성 입자빔 입사장치용 이온원 개발을 완료하여 KSTAR 토카막 장치에 설치하였으며, 2013년 현재 KSTAR에는 총 두 개의 이온원이 장착되어 최대 약 3 MW 이상의 중수소 중성 입자빔을 입사하여 KSTAR 토카막 실험의 H-mode 달성과 운전 시나리오 연구에 많은 기여를 하고 있다. 한국원자력연구원에서 최초로 개발된 이온원은 미국 TFTR 장치에서 사용되었던 US LPIS (Long Pulse Ion Source)를 기본으로 하여 국내 개발을 수행하였다. 이 온원은 크게 플라즈마를 발생시키는 플라즈마 발생부와 발생된 이온을 인출 및 가속시키는 가속부로 구성되는데, 개발과정에서 가장 먼저 KSTAR의 장주기 운전에 적합하도록 플라즈마 방전부와 가속부의 냉각회로를 요구되는 열부하에 맞게 설계 수정하였다. 그 후 플라즈마 방전부는 방전 시간과 안정성, 플라즈마 밀도의 균일도, 정격 운전, 방전 효율 등을 고려하여 수정 보완하며 개발을 진행하여왔다. 가속부의 경우 국내 제작기술의 한계를 극복하기 위해 빔 인출그리드를 TFTR의 US LPIS 모델의 슬릿형 그리드 타입에서 원형 인출구 타입으로 변경하였으며, 이후 가속 전극의 고전압 내전력 문제, 빔 인출 전류와 전력, 인출 빔의 광학적 질(quality), 빔 인출 시간 동안의 안정성 등을 위해 그리드의 크기와 간격, 모양 등을 변경하여 개발을 수 행하여 왔다. 이 논문은 한국원자력연구원에서 개발이 진행되어 왔던 이온원들을 시간적으로 되짚어 보면서 현재까지의 성과와 문제점, 그리고 앞으로의 개발 방향에 대해 논의하고자 한다.

  • PDF

The Electrical and Optical Properties of Polymer Light Emitting Diode with ITO/PEDOT:PSS/MEH-PPV/Al Structure at Various Concentration of MEH-PPV (ITO/PEDOT:PSS/MEH-PPV/Al 구조에서 MEH-PPV 농도에 따른 유기발광다이오드의 전기$\cdot$광학적 특성)

  • Gong Su Cheol;Back In Jea;Yoo Jae Hyouk;Lim Hun Seung;Chang Ho Jung;Chang Gee Keun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.155-159
    • /
    • 2005
  • In this report, Polymer light emitting diodes (PLEDs) with an ITO/PEDOT:PSS/MEH-PPV/Al structure were prepared by spin coating method on the glass substrate patterned ITO (indium tin oxide), using PEDOT:PSS(poly(3,4=ethylenedioxythiophene):poly(styrene sulfolnate)) as the hole transfer material and MEH-PPV(poly(2-methoxy-5-(2-ethyhexoxy)-1,4-phenylenvinylene)) having a different concentration (0.1, 0.3, 0.5, 0.7, 0.9, 1.5 wt$\%$) as the emitting material. The electrical and optical properties of the prepared PLED samples were investigated. The good electrical and optical properties were observed for the PLED samples with a MEH-PPV concentration ranging from 0.5 to $0.9 wt\%$. However, the current and luminance values for PLED sample with $1.5 wt\%$ of MEH-PPV decreased greatly. The maximum luminance and light efficiency for the PLEDs with concentration of $0.5 wt\%$ MEH-PPV were $409 cd/m^2$ and 4.90 Im/W at 9 V, respectively. The emission spectrums were found to be $560{\~}585 nm$ in wavelength showing orange color.

  • PDF

Low-Power $32bit\times32bit$ Multiplier Design for Deep Submicron Technologies beyond 130nm (130nm 이하의 초미세 공정을 위한 저전력 32비트$\times$32비트 곱셈기 설계)

  • Jang Yong-Ju;Lee Seong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.6 s.348
    • /
    • pp.47-52
    • /
    • 2006
  • This paper proposes a novel low-power $32bit\times32bit$ multiplier for deep submicron technologies beyond 130nm. As technology becomes small, static power due to leakage current significantly increases, and it becomes comparable to dynamic power. Recently, shutdown method based on MTCMOS is widely used to reduce both dynamic and static power. However, it suffers from severe power line noise when restoring whole large-size functional block. Therefore, the proposed multiplier mitigates this noise by shutting down and waking up sequentially along with pipeline stage. Fabricated chip measurement results in $0.35{\mu}m$ technology and gate-transition-level simulation results in 130nm and 90nm technologies show that it consumes $66{\mu}W,\;13{\mu}W,\;and\;6{\mu}W$ in idle mode, respectively, and it reduces power consumption to $0.04%\sim0.08%$ of active mode. As technology becomes small, power reduction efficiency degrades in the conventional clock gating scheme, but the proposed multiplier does not.

A Study on Sulfonated Fluorenyl Poly(ether sulfone)s as Catalyst Binders for Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지 촉매층 바인더를 위한 Sulfonated Fluorenyl Poly(ether sulfone)에 관한 연구)

  • Cho, Won Jae;Lee, Mi Soon;Lee, Youn Sik;Yoon, Young Gi;Choi, Young Woo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Oxygen reduction reaction in the fuel cell (ORR) plays a dominant role in the overall reaction. In addition, the low compatibility between the membrane and the binder consisted of different materials, greatly reduces the efficiency of the fuel cell performance. In view of these two problems, geometrically modified copolymers with 9.9_Bis (4-hydroxyphenyl) were synthesized via condensation reaction instead of conventional biphenol and were adopted as hydrocarbon ionomer binders. By utilizing these binders, two kinds of MEAs using fluorinated Nafion membrane and hydrocarbon based membrane were manufactured in order to electrochemical performance evaluation. With current-voltage curves, there was no significant difference in the 0.6 V when two types of membrane were applied. Also, tafel slope became considerably lower as compared to the Nafion membrane. Thus, it is determined that the new hydrocarbon binder is expected to contribute the improvement in performance of fuel cells.

Channel characteristics of multi-path power line using a contactless inductive coupling unit (비접촉식 유도성 결합기를 이용한 다중경로 전력선 채널 특성)

  • Kim, Hyun-Sik;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.799-804
    • /
    • 2016
  • Broadband powerline communication (BPLC) uses distribution lines as a medium for achieving effective bidirectional data communication along with electric current flow. As the material characteristics of power lines are not good at the communication channel, the development of power line communication (PLC) systems for internet, voice, and data services requires measurement-based models of the transfer characteristics of the network suitable for performance analysis by simulation. In this paper, an analytic model describing a complex transfer function is presented to obtain the attenuation and path parameters for a multipath power line model. The calculated results demonstrated frequency-selective fading in multipath channels and signal attenuation with frequency, and were in good agreement with the experimental results. Inductive coupling units are used as couplers for coupling the signal to the power line to avoid physical connections to the distribution line. The inductance of the ferrite core, which depends on the frequency, determines the cut-off frequency of the inductive coupler. Coupling loss can be minimized by increasing the number of windings around the coupler. Coupling efficiency was improved by more than 6 dB with three windings compared to the results obtained with one winding.

A Study on Development of Power Analysing Device for PV Module (태양전지 모듈의 발전량 분석 장치 개발에 관한 연구)

  • Moon, Chae-Joo;Kwak, Seung-Hun;Jang, Yeong-Hak;Kim, Tae-Gon;Kim, Eui-Sun;Kim, Tae-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • This study was conducted to estimate the relative performance of modules with changed characteristics due to long term exposure to the outdoor environment, with a specially made test device for simultaneous measurement of real time power output from the photovoltaic array, taking into account the inclined panel, direct irradiation, power being generated, temperature as well as the optimal analysis timing. In terminology description, M is an abbreviation of module and Group A, Group B are 10 modules series connection (1~10 of M), (11~20 of M) for each of them respectively. The overall mean voltage difference of M-18 with the lowest power output and M-14 with the highest output is-2.13V and it was identifiable that voltage difference was more concentrated to Group B. In addition, in case of M-2 and M-7, M-8, when compared with M-14, the overall mean voltage difference was -0.92V, -1.56 and -0.91V respectively showing the more concentration to Group A. When the temperature of module went up by $1^{\circ}C$, the mean voltage was reduced by 0.35V. For current, Group A was lower than Group B by-0.022A and the ratio of each group was 49.68% and 50.32% respectively, presumably the module with deteriorated properties were more concentrated to Group A relatively. From the comparison of relations with the comprehensive accumulation, M-2, M-7, M-8, M-16 and M-18 were those with deterioration of performance to the worst, thereby requiring precision examination. In comparative efficiency, M-14 was the most excellent one as 12.19% while M-18 as 10.53% was identified that its efficiency was comparatively rapidly reduced.

Improvement of PWM Driving Control Characteristics for Low Power LED Security Light (저전력형 LED 보안등의 PWM형 구동제어 특성 개선)

  • Park, Hyung-Jun;Kim, Nag-Cheol;Kim, In-Su
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.368-374
    • /
    • 2017
  • In this Paper, we developed a low power type LED security light using LED lighting that substitutes a 220[V] commercial power source for a solar cell module instead of a halogen or a sodium lamp. in addition, a PWM type drive control circuit is designed to minimize the heat generation problem and the drive current of the LED drive controller. in developed system, The light efficiency measurement value is 93.6[lm/W], and a high precision temperature sensor is used inside the controller to control the heat generation of the LED lamp. In order to eliminate the high heat generated from the LED lamp, it is designed to disperse quickly into the atmosphere through the metal insertion type heat sink. The heat control range of LED lighting was $50-55[^{\circ}C]$. The luminous flux and the lighting speed of the LED security lamp were 0.5[s], and the beam diffusion angle of the LED lamp was about $110[^{\circ}C]$ by the light distribution curve based on the height of 6[m].

Luminescence Characteristics of Blue Phosphor and Fabrication of a UV-based White LED (UV 기반 백색 LED용 청색 형광체의 발광특성 및 백색 LED 제조)

  • Jung, Hyungsik;Park, Seongwoo;Kim, Taehoon;Kim, Jongsu
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.216-220
    • /
    • 2014
  • We have synthesized a $CaMgSi_2O_6:Eu^{2+}$ blue phosphor via a solid-state reaction method. The $CaMgSi_2O_6:Eu^{2+}$ phosphor has monoclinic structure with a space group of C2/c (15), and an emission band peaking at 450 nm (blue) due to the $4f^7-4f^65d$ transition of the $Eu^{2+}ion$. The emission intensity at $100^{\circ}C$ is 54% of the value at room temperature. A white LED was fabricated by integrating a UV LED (400 nm) with our blue phosphor plus two commercial green and red phosphors. The white LED shows a color temperature of 3500 K with a color rendering index of 87 (x = 0.3936, y = 0.3605), and a luminous efficiency of 18 lm/W. The white LED shows a luminance maintenance of 97% after operation at 350 mA for 400 hours at $85^{\circ}C$.