• Title/Summary/Keyword: 전류 변압기

Search Result 474, Processing Time 0.029 seconds

A Study on Fault Characteristics of DFIG in Distribution Systems Based on the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전의 배전계통 사고특성에 관한 연구)

  • Son, Joon-Ho;Kim, Byung-Ki;Jeon, Jin-Taek;Rho, Dae-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.2
    • /
    • pp.47-56
    • /
    • 2011
  • Korea Ministry of Knowledge Economy has estimated that wind power (WP) will be occupied 37% in 2020 and 42% in 2030 of the new energy sources, and also green energies such as photovoltaic (PV) and WP are expected to be interconnected with the distribution system because of Renewable Portfolio Standard (RPS) starting from 2012. However, when a large scale wind power plant (over 3[MW]) is connected to the traditional distribution system, protective devices (mainly OCR and OCGR of re-closer) will be occurred mal-function problems due to changed fault currents it be caused by Wye-grounded/Delta winding of interconnection transformer and %impedance of WP's turbine. Therefore, when Double-Fed Induction Generator (DFIG) of typical WP's Generator is connected into distribution system, this paper deals with analysis three-phase short, line to line short and a single line ground faults current by using the symmetrical components of fault analysis and PSCAD/EMTDC modeling.

Analysis on Fault Current Limiting and Bus-Voltage Sag Suppressing Characteristics of a Transformer Type Superconducting Fault Current Limiter (변압기형 초전도 한류기의 고장전류 제한 및 모선전압강하 억제특성 분석)

  • Park, Jin-Seol;Kang, Dae-Seung;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.113-117
    • /
    • 2011
  • As one of the countermeasures to solve the increase of the fault current in a power system, the superconducting fault current limiter (SFCL) has been noticed together with the development of a various types of SFCL, which has accelerated the researches to apply a SFCL into a power system. Among the developed SFCLs, the transformer type SFCL is expected to be available for adjusting the voltage and the current ratings of the SFCL. In this paper, the fault current limiting and the bus line‘s voltage sag suppressing effect by the transformer type SFCL were investigated and the case without the transformer type SFCL was compared as well. Through the analysis on the results of the short-circuit tests, the fault current limiting and the bus-line voltage suppressing characteristics of the transformer type SFCL could be confirmed to be effectively performed.

Economic Evaluation of Step Voltage Regulator in Distribution Systems (배전계통에 있어서 선로전압조정장치의 경제성 평가에 관한 연구)

  • Rho, Dae-Seok;Lee, Eun-Mi;Park, Chang-Ho;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.140-143
    • /
    • 2003
  • 배전선로에서 부하가 증가함에 따라 주상변압기의 탭 조정만으로는 모든 수용가단 전압을 규정치($220{\pm}6%$) 이내로 유지시킬 수가 없게 된다. 따라서, 수용가단 전압의 품질을 규정치 이내로 유지할 수 있는 보강공사가 필요하게 된다. 현재는 수용가단 전압품질에 문제가 발생하지 않으나, 선로의 부하가 증가 될수록 통과전류의 양이 많아져, 전압강하가 높아지기 때문에 일부 수용가에 저전압이 발생하게 될 가능성이 있게 된다. 여기서는 부하증가(부하증가율 : 1%, 2%, 3%, 4%, 5%)에 대한 대책으로 다음과 같은 3가지 대안을 고려하기로 한다. 본 연구에서는 1) 선로전압조정장치(SVR)의 설치 2) 회선증강(ACSR $95mm^2$ $\rightarrow$ ACSR $160mm^2$) 3) 회선신설(전압강하 5%이상 지점에 회선 추가)에 대한 경제성을 현재가치 환산법에 의해 평가해 보고, 가장 적정한 대안을 제안하여 배전계통 계획 및 운용에 대한 합리적인 투자 대안을 제시한다.

  • PDF

Analysis on Fault Current Limiting Operation of Three-Phase Transformer Type SFCL Using Double Quench (이중퀜치를 이용한 삼상변압기형 한류기의 고장전류제한 동작 분석)

  • Han, Tae-Hee;Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.184-189
    • /
    • 2022
  • In this paper, the fault current limiting operations of three-phase transformer type superconducting fault current limiter (SFCL) using double quench, which consisted of E-I iron core with three legs wound by primary and secondary windings and two superconducting modules (SCMs), were analyzed according to three-phase ground fault types. To verify the effective operation of the three-phase transformer type SFCL using double quench, the test circuit for three-phase ground faults was constructed, and the fault current tests were carried out. Through analysis on the fault current test results, the different fault current limiting characteristics of three-phase transformer type SFCL using double quench from three-phase transformer type SFCL using three SCMs were discussed.

Analysis on Fault Current Limiting Characteristics of Three-Phase Transformer Type SFCL using Double Quench According to Three-Phase Ground-Fault Types (이중퀜치를 이용한 삼상변압기형 초전도한류기의 삼상지락 고장 종류에 따른 고장전류 제한 특성 분석)

  • Shin-Won Lee;Tae-Hee Han;Sung-Hun Lim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.614-619
    • /
    • 2023
  • The fault current limiting characteristics of three-phase transformer type superconducting fault current limiter (SFCL), which consisted of three-phase primary and secondary windings wound on E-I iron core, one high-TC superconducting (HTSC) element connected with the secondary winding of one phase and another HTSC element connected in parallel with other two secondary windings of two phases, were analyzed. Unlike other three-phase transformer type SFCLs with three HTSC elements, three-phase transformer type SFCL using double quench has the merit to perform fault current limiting operation for three-phase ground faults with two HTSC elements. To verify its proper three-phase ground fault current limiting operation, three-phase ground faults such as single-line ground, double-line ground and triple-line ground faults were generated in three-phase simulated power system installed with three-phase transformer type SFCL using double quench. From analysis of its fault current limiting characteristics based on tested results, three-phase transformer type SFCL using double quench was shown to be effectively operated for all three-phase ground faults.

A Study on the Characteristic of Power Consumption and Design of the Electrical Installations for the Inverter Controlled Elevator (인버터제어 승강기의 전력소비 특성과 전원설비 계획에 관한 연구)

  • 이기홍;성세진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.2
    • /
    • pp.57-63
    • /
    • 2001
  • This paper analysed the characteristic of Power consumption at many type of Inverter controlled Elevator. Especially, this paper proposed the standard value of full load currents. For this propose, it was classified by the passenger capacity and manufacture company. As a result, it is found that (i) the value is between -3[A] and 7[A] in case of elevator. That means the full load currents was smaller than the standard value of conventional operation type (ii) the value is between 0.5[kVA] and 3[kVA] in case of Power transformer. That means the transformer capacity was smaller than the standard value of conventional operation type. it was classified by the passenger capacity at inverter controlled elevator in apartment Also, to guarantee the operation stop of inverter controlled elevator, this paper proposed the redundancy method of electrical installations. the redundancy method is (i) 2 line service system and (ii) 2 distribution line system.

  • PDF

A High-efficiency Single-phase Photovoltaic Inverter for High-voltage Photovoltaic Panels (고전압 태양광 패널용 고효율 단상 태양광 인버터)

  • Hyung-Min, Ryu
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.584-589
    • /
    • 2022
  • For DC-AC power conversion from a high-voltage photovoltaic panel to a single-phase grid, the two-stage transformerless inverter with a buck-boost converter followed by a full-bridge inverter is widely used. To avoid an excessive leakage current due to the large parasitic capacitance of the photovoltaic panel, the full-bridge inverter can only adopt the bipolar PWM which results in much higher power loss compared to the unipolar PWM. In order to overcome such a poor efficiency, this paper proposes a new topology in which an IGBT and a diode for circuit isolation are added to the buck-boost converter. The proposed circuit isolation method allows the unipolar PWM in the full-bridge inverter without any increase in the leakage current so that the overall efficiency can be improved. The validity of the proposed solution is verified by computer simulation and power loss calculation.

Development of Algorithm and Program for the Ground Fault Detection in Ungrounded Distribution Power System (비접지 배전계통 지락고장 검출 알고리즘 및 프로그램 개발)

  • Park, So-Young;Shin, Chang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2619-2627
    • /
    • 2009
  • The ground fault is occupying 70% among the total number of faults in ungrounded distribution power system. When the ground fault occurs in ungrounded system, the fault current is so small that it is hard to detect. But fault handling is very important because to continue power supply during fault conditions may cause the fault spreading and the distribution device in trouble. This paper presents the fault line detection method by using GPT signal detecting zero sequence voltage, and the fault section detection method by detecting whether GPT signal is disappeared or not during shifting normally open switch, which is connecting switch between distribution lines with open state in order to restore the outage area under emergency situation, and during isolating each section one by one which belongs to the fault line. This method is efficient because there is no whole power interruption during the fault section detection, and it is possible to perform both the fault section detection and the service restoration for the outage area at the same time, and it can apply to various distribution system configuration. Program for the fault restoration was developed applying proposed method, and it has been validated by applying to the pilot project of distribution automation system in Vietnam which has the ungrounded distribution system.

A Study on the Determination of Optimal UPFC Location (최적의 UPFC 위치 결정에 관한 연구)

  • Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.257-262
    • /
    • 2009
  • The unified power flow controller(UPFC) is one of the most effective devices in the FACTS family. This paper concerns about a filtering technique for reducing the computer calculation to determine the optimal location of UPFC in a power system. The sensitivities of the power generation cost for UPFC control parameters are evaluated. This technique requires that only one optimal power flow is run to get UPFC sensitivities for all possible transmission lines. To find out a optimal locating of a single UPFC in power system, an ideal transformer model which consists of a complex turns ratio and a variable shunt admittance was used. In this model, the UPFC control variables do not depend on UPFC input and output currents and voltages. The sensitivity method was tested on a 5-bus system derived from the IEEE 14-bus system and IEEE 14-bus system to establish its effectiveness.

  • PDF

ARC Discharge Sound Source in Underwater (수중 아-크 방전음원에 관한 연구)

  • Chang, Jea-Hwan;Chang, Jee-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 1985
  • In general the impulse sound sources of underwater generated by electric arc discharge had used static energy of the charged capacitors. The author proposed an underwater arc discharge sound source using secondary voltage of high voltage transformer without capacitors. The arc discharge device was composed of a high voltage transformer and a switching system. The impulse current in the primary turn of the high voltage transformer is controlled by the switching system and inductive current of the secondary turn in the high voltage transformer is used in making impulsive arc discharge. A series of experiment have been carried out to observe the acoustic characteristics of the impulse sound source generated by the arc discharge. The results obtained were as follows: 1. Secondary current at the time of arc discharge keeps after ohm's law in the beginning and the maximum current flows out as soon as arc discharge breaks out. 2. A time difference between a start of applied current and a generation of arc discharge sound is the 3msec and it is generated arc sound when breaking down electric insulation at maximum voltage. 3. The sharper the end of electrodes and the higher the secondary voltage, the higher the sound pressure level. 4. Arc discharge sound was generated even at the distance of 100cm between electrodes and was stably reproductive at the gap of 1cm to 100cm. 5. Electric arc discharge sound wave is a shock wave of pulse-width of 0.15msec and spectral distribution of it is plenty of low frequency components less than 10 KHz.

  • PDF