유기물/무기물 나노 복합재료는 고온과 저전력에서 동작해야하는 차세대 전자 소자와 광소자 제작에 대단히 유용한 소재이다. 간단하고 저렴한 제조 방법과 휘어짐이 가능한 특성을 이용하여 유기물/무기물 나노 복합재료를 사용한 비휘발성 메모리 소자의 제작과 메모리 특성에 대한 연구가 수행되었으나, SnO2 나노 입자가 삽입된 고분자 박막을 기반으로 제작한 저항 구조의 비휘발성 메모리 소자인 유기 쌍안정성 소자에 대한 연구는 상대적으로 미흡하다. 본 연구에서는 poly(methyl methacrylate) (PMMA) 박막 안에 분산된 SnO2 나노 입자를 사용하여 제작한 유기 쌍안정성 소자의 메모리 특성을 관찰하였다. 소자를 제작하기 위해 나노 입자의 전구체인 Tin 2-ethylhexanoate을 dibutyl ether에 용해시킨 후, 화학적 방법을 사용하여 용매 안에서 SnO2 나노 입자를 합성하였다. 합성한 SnO2 나노 입자와 PMMA를 클로로벤젠에 용해하여 고분자 용액을 제작하였다. 전극인 indium-tin-oxide가 증착된 유리 기판 위에 제작한 고분자 용액을 스핀 코팅하고, 열을 가해 용매를 제거하여 SnO2 나노 입자가 분산되어 있는 PMMA 나노복합체를 형성하였다. 그 위에 Al 전극을 증착하여 유기 쌍안정성 소자를 완성하였다. 제작된 소자에 전압을 인가하여 전류를 측정한 결과 유기 쌍안정성 소자에서는 동일 전압에서 높은 전류 (ON 상태)와 낮은 전류 (OFF 상태)가 흐르는 쌍안정성 특성을 나타냈다. 그러나 SnO2 나노 입자가 없는 PMMA 박막으로 형성된 소자에서는 전류-전압 측정에서 쌍안정성 특성이 나타나지 않았다. 따라서 PMMA 박막 안에 삽입된 SnO2 나노 입자가 유기 쌍안정성 소자의 메모리 효과를 나타내는 원인임을 알 수 있었다. 전류-시간 측정 결과는 소자의 ON 상태 및 OFF 상태 전류가 시간에 따른 큰 변화 없이 1000 사이클 이상 지속적으로 유지 하고 있음을 보여 줌으로써 유기 쌍안정성 소자를 장시간 사용할 수 있음을 확인시켜 주었다.
최근 반도체 소자의 미세화에 따라, 단채널 효과에 의한 누설전류 및 소비전력의 증가 등이 문제되고 있다. 대표적인 휘발성 메모리인 dynammic random access memory (DRAM)의 경우, 소자의 집적화가 진행됨에 따라 저장되는 정보의 양을 유지하기 위해 캐패시터영역의 복잡한 공정을 요구하게 된다. 하나의 캐패시터와 하나의 트랜지스터로 이루어진 기존의 DRAM과 달리, single transistor (1T) DRAM은 silicon-on-insulator (SOI) 기술을 기반으로 하여, 하나의 트랜지스터로 DRAM 동작을 구현한다. 이러한 구조적인 이점 이외에도, 우수한 전기적 절연 특성과 기생 정전용량 및 소비 전력의 감소 등의 장점을 가지고 있다. 또한 strained-Si 층을 적용한 strained-Silicon-On-Insulator (sSOI) 기술을 이용하여, 전기적 특성 및 메모리 특성의 향상을 기대 할 수 있다. 본 연구에서는 sSOI 기판위에 1T-DRAM을 구현하였으며, impact ionization과 gate induced-drain-leakage (GIDL) 전류에 의한 메모리 구동 방법을 통해 sSOI 1T-DRAM의 메모리 특성을 평가하였다. 그 결과 strain 효과에 의한 전기적 특성의 향상을 확인하였으며, GIDL 전류를 이용한 메모리 구동 방법을 사용했을 경우 낮은 소비 전력과 개선된 메모리 윈도우를 확인하였다.
나노복합체를 이용하여 제작한 유기 쌍안정성 형태의 비휘발성 메모리 소자는 간단한 공정과 플렉서블 기기에 응용 가능성 때문에 많은 연구가 진행되고 있다. 나노복합체를 사용하여 제작한 비휘발성 메모리 소자의 전기적 성질에 대한 연구는 많이 진행되었으나, poly (methyl methacrylate) (PMMA) 고분자 박막 내부에 분산된 $SnO_2$ 나노입자를 이용하여 제작한 유기 쌍안정성 소자에서 기억 특성의 안정성에 대한 연구는 상대적으로 미흡하다. 본 연구에서는 PMMA 박막층 내부에 분산된 $SnO_2$ 나노입자를 사용한 메모리 소자를 제작하여 전기적 특성 및 안정성에 대하여 관찰하였다. $SnO_2$ 나노입자를 PMMA와 용매인 클로로벤젠에 용해한 후에 초음파 교반기를 사용하여 두 물질을 고르게 섞었다. 전극이 되는 indium-tin-oxide 가 성장된 유리 기판 위에 $SnO_2$ 나노입자와 PMMA가 섞인 용액을 스핀 코팅한 후, 열을 가해 용매를 제거하여 SnO2 나노입자가 PMMA에 분산되어 있는 유기 쌍안정성 형태의 나노복합체 박막을 형성하였다. 형성된 나노복합체 박막 위에 상부 전극으로 Al을 열증착하여 비휘발성 메모리 소자를 제작하였다. 제작된 소자의 전류-전압 측정 결과는 메모리 특성을 나타내는 ON과 OFF의 두 가지 상태가 존재하고 ON/OFF 전류 비율은 20이었다. $SnO_2$ 나노입자를 포함하지 않은 소자와 비교를 통해 $SnO_2$ 나노입자가 비휘발성 메모리 소자에서의 전하 저장 영역으로 하는 역할을 확인하였다. 전류-시간 측정 결과 소자의 ON/OFF 전류 비율이 시간에 따라 큰 변화 없이 1,000회 이상 지속적으로 유지함을 관찰함으로써 소자의 안정성을 확인하였다.
부유 게이트 Floating gate (FG) 플래시 메모리 소자의 단점을 개선하기 위해 전하 포획 층에 전하를 저장하는 전하 포획 플래시 메모리 Charge trap flash (CTF)소자에 대한 연구가 활발히 진행되고 있다. CTF소자는 FG플래시 메모리 소자에 비해 비례축소가 용이하고 긴 retention time을 가지며, 낮은 구동 전압을 사용하는 장점을 가지고 있다. CTF 소자에서 비례축소에 따라 단채널 효과와 펀치-쓰루 현상이 증가하는 문제점이 있다.본 연구에서는 CTF 단채널 효과와 펀치-쓰루 현상을 감소시키기 위한 방법으로 silicon-on-insulator (SOI) 기판을 사용하였으며 SOI기판에서 절연층의 깊이에 따른 전기적 특성을 고찰하였다. silicon-oxide-nitride-oxide-silicon(SONOS) 구조를 가진 CTF 메모리 소자를 사용하여 절연층의 깊이 변화에 따른 subthreshold swing특성, 쓰기-지우기 동작 특성을 TCAD 시뮬레이션 툴인 Sentaurus를 사용하여 조사하였다. 소스와 드레인의 junction depth는 20 nm 사용하였고, 절연층의 깊이는 5 nm~25 nm까지 변화하면서 절연층의 깊이가 20 nm이하인 fully depletion 소자에 비해, 절연층의 깊이가 25 nm인 소자는 partially depletion으로 인해서 드레인 전류 레벨이 낮아지고 subthreshold swing값이 증가하는 현상이 나타났다. 절연층의 깊이가 너무 얕을 경우, 채널 형성의 어려움으로 인해 subthreshold swing과 드레인 전류 레벨의 전기적성질이 SOI기판을 사용하지 않았을 경우보다 떨어지는 경향을 보였다. 절연층의 깊이가 17.5 nm인 경우, CTF소자의 subthreshold swing과 드레인 전류 레벨이 가장 좋은 특성을 보였다.
상변화 메모리용 셀은 전류 구동형으로써 셀에 전류를 인가하였을 때 저항이 높은 상태(비정질상)과 저항이 낮은 상태(결정질상)의 두가지 특성을 갖는다. 저항이 높은 상태에서 전류나 전압을 인가하면 높은 저항을 보이다가 일정 값(threshold voltage) 이상에서 낮은 저항을 갖는 현상을 보인다. 이때 상변화물질의 종류 혹은 셀의 사이즈에 따라 threshold voltage의 차이가 나타나는데 이 값을 줄임으로서 상변화 메모리의 구동 전류의 감소에 기여할 수 있다. 본 연구에서는 스퍼터링 방법을 이용해 박막형식의 셀을 제작하여 전기적 특성을 관찰하였다. 셀은 Si 기판 위에 radio frequency power supply 와 direct current power supply를 사용해 하부전극과 상변화층, 그리고 상부전극의 순으로 증착하여 제작하였다. 상변화층은 $Ge_2Sb_2Te_5$를 사용하였고 제작된 셀은 scanning electon microscope(SEM)를 이용하여 표면의 상태를 확인하였고 Keithley 4200scs를 이용하여 인가된 전류 혹은 전압에 따른 특성변화를 측정하였다.
현재 차세대 메모리로 연구되고 있는 것 중 가장 각광 받는 것은 PRAM 이다. MRAM의 경우 복잡한 공정 때문에 상용화에 많은 어려움이 따르는데 반해 PRAM은 DRAM과 유사한 구조를 가지고 있기 때문에 기존 DRAM의 공정라인을 사용할 수 있다는 장점을 가지고 있다. 하지만 PRAM은 높은 작동전류가 필요하다는 단점을 가지고 있다. 따라서 PRAM이 상용화 되기 위해서는 2mA 이하의 작동전류에서 상변환이 일어나야 한다. 여기서 말하는 상변환이란 결정질 상태를 비정질 상태로 변환 시키는 것을 의미한다. 본 연구에서는 우선 8F$^2$ 크기(F=0.15$\mu\textrm{m}$)의 DRAM 단위소자 메모리 구조를 이용하여 lT/lRPCRAM 모델을 구축하였다. 구축된 모델을 이용하여 요구되는 작동전류(2mA이하)에서의 PRAM의 온도 분포를 시뮬레이션을 통하여 예측하였다. 또한 단위소자를 구성하는 재료의 물성 변화가 소자 내부의 온도 분포에 미치는 영향을 분석하였다.
본 연구에서는 상변화 메모리 소자의 상변화 재료의 두께에 따른 열전달 현상과 지우기 전류의 변화량을 3차원 유한요소 해석 도구를 이용하여 해석하였다. 상변화 메모리의 하부전극과 상변화 소자의 접촉 부분에서 발생한 주울열은 상변화재료를 통해 상부전극 텅스텐으로 전달되어 외부로 빠져나간다. 상변화 재료 박막의 두께가 $200[{\AA}]$인 경우는 상부전극을 통해 빠져나가는 열이 커지게 되어 상전이를 일으키는 지우기 전류가 크게 증가하는 특성을 보인다.
유기물 박막에 나노입자가 분포되어 있는 나노복합체를 이용한 전자 소자는 낮은 소비 전력, 낮은 공정 가격, 그리고 높은 기계적 휘어짐이 가능하기에 차세대 전자 소자로 많은 연구가 진행되고 있다. 친환경 소자를 지향하는 현대 기술에서 환경 친화적 코어-쉘 구조의 나노입자를 이용한 나노복합체는 차세대 전자 소자 중 비휘발성 메모리 소자 연구에서 뛰어난 소자 성능을 보여주고 있어 큰 관심을 받고 있으나 코어-쉘 나노입자를 이용한 비휘발성 메모리 소자의 쉘의 유무에 따른 전도도 특성 및 전하수송 메커니즘 연구는 아직 미미한 실정이다. 본 연구에서는, indium-tin-oxide가 코팅된 polyethylene terephthalate 기판 위에 CuInS2 (CIS)-ZnS 친환경 코어-쉘 나노입자가 poly (methylmethacrylate) (PMMA) 안에 분산된 박막을 이용한 비휘발성 메모리 소자를 제작하여 ZnS 쉘이 전기적 전도도에 미치는 영향을 관찰 하였다. CIS-ZnS 코어-쉘 나노입자에서 ZnS 쉘이 없어도 메모리 소자의 전류-전압 특성에서는 높은 전도도 (ON)와 낮은 전도도 (OFF) 상태가 존재하는 전류 쌍안정성 동작을 보이지만, ZnS 쉘의 유무에 따라 ON/OFF 비율 차이를 보여 전도도 특성이 다름을 관측 하였다. 반복된 전계적 스트레스에 의한 전도도 상태 유지 능력 측정을 수행하여 ZnS 쉘의 유무에 따른 소자의 전도도 안정성 능력을 관측하였다. 측정된 전기적 특성을 기반으로 PMMA 박막 안에 분산된 CIS-ZnS 코어-쉘 나노입자를 이용한 비휘발성 메모리 소자에서 ZnS 쉘의 따른 전도도 특성 및 전하수송 메커니즘 특성을 설명하였다.
낮은 공정비용과 높은 집적도를 가지는 플래시 메모리 소자에 대한 휴대용기기에 응용가능성때문에 연구가 필요하다. 플래시 메모리 중에서도 질화막에 전하를 저장하는 전하 포획 플래시 메모리 소자는 기존의 부유 게이트 플래시 메모리 소자에 비해 공정의 단순하고 비례축소에 용이하며 인접 셀 간의 간섭에 강하다는 장점으로 많은 관심을 갖게 되었다. 소자의 크기가 작아짐에 따라 전하 포획 플래시 메모리 소자 역시 인접 셀 간의 간섭현상과 단채널 효과가 문제를 해결할 필요가 있다. 본 연구에서는 인접 셀 간의 간섭을 최소화 시키기 위하여 metal-oxide-nitride-oxide-silicon (MONOS) 플래시 메모리 소자에 bit-line 방향으로 금속 공간층을 삽입할 구조를 사용하였으며 금속 공간층의 깊이에 따른 전기적 성질을 비교하였다. 게이트 길이는 30 nm, 금속 공간층의 깊이를 채널 표면에서부터 4 nm~12 nm까지 변화하면서 TCAD 시뮬레이션 툴인 Sentaurus를 사용하여 전기적 특성을 계산하였다. 금속 공간층의 깊이가 채널표면에 가까워 질수록 fringing field가 증가하여 드레인 전류가 증가하였고, 금속 공간층의 전기적 차폐로 인해 인접 셀의 간섭현상도 감소하였다. 금속 공간층이 표면에 가까이 위치할수록 전하 저장층을 감싸는 면적이 증가하여 coupling ratio가 높아지기 때문에 subthreshold swing 특성이 향상되었으나, 금속 누설전류가 증가하였다.
모바일 기기의 성장세로 인해 낸드 플래시 메모리에 대한 수요가 급격히 증가하면서 높은 집적도의 소자에 대한 요구가 커지고 있다. 그러나 기존의 MOSFET 구조의 소자는 비례 축소에 의한 게이트 누설 전류, 셀간 간섭, 단 채널 효과 같은 여러 어려움에 직면해 있다. 특히 트윈 실리콘 나노 와이어 전계 효과 트랜지스터 (TSNWFETs)는 소자의 크기를 줄이기 쉬우며 게이트 비례 축소가 용이하여 차세대 메모리 소자로 각광받고 있다. 그러나 TSNWFETs의 공정 방법과 실험적인 전기적 특성에 대한 연구는 많이 이루어 졌지만, TSNWFETs의 전기적 특성에 대한 이론적인 연구는 많이 진행되지 않았다. 본 연구는 직경의 크기가 다른 나노 와이어를 사용한 TSNWFETs의 전기적 특성에 대해 이론적으로 계산하였다. TSNWFETs과 실리콘 나노 와이어를 사용하지 않은 전계 효과 트랜지스터(FET)를 3차원 시뮬레이션 툴을 이용하여 계산하였다. TSNWFETs와 FETs의 드레인 전류와 문턱전압 이하 기울기, 드레인에 유기된 장벽의 감소 값, 게이트에 유기된 드레인 누설 전류 값을 이용하여 전류-전압 특성을 계산하였다. 이론적인 결과를 분석하여 TSNWFETs의 스위칭 특성과 단 채널 효과를 최소화하는 특성 및 전류 밀도를 볼 수 있었으며, 나노 와이어의 직경이 감소하면 증가하는 드레인에 유기된 장벽의 감소를 볼 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.