• 제목/요약/키워드: 전력 예측

검색결과 1,487건 처리시간 0.042초

전력수요 분석과 예측을 통한 수력발전 전력거래가격 전망 전략 (Forecasting Strategy for Hydropower Power Market Price by Power Demand Analysis and Forecast)

  • 김기태;이경배;최인석;김종겸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.656-657
    • /
    • 2011
  • 산업사회의 급속한 발전과 생활수준 향상에 따라 전력수요 및 공급전망에 대한 인식이 점차 강조되고 있다. 에너지자원이 부족한 우리나라는 전체 에너지의 약 97%를 수입에 의존하고 있으므로 전력공급의 정확한 수요예측을 통해서 안정적, 경제적으로 전력을 공급해야 한다. 2001년 전력산업구조개편에 따라 전력시장은 발전부문만 시장에 참여하여 경쟁하는 발전경쟁체제로 발전사업자의 입찰량과 전력거래소의 전력수요 예측 결과를 이용하여 시간대별 전력시장가격을 결정하는 가격결정발전 계획을 수립하고 있다. 본 논문에서는 청정 녹색에너지로 피크시간대에 발전하여 주파수 조절을 담당함으로써 전력계통에 크게 기여하고 있는 수력 발전기의 최적 입찰 전략 및 수력발전 사업계획에 활용할 수 있는 전력거래가격 전망 전략을 제시하여 수력발전사업자의 수익 증대와 전력시장 가격 안정화에 기여하고자 한다.

  • PDF

전력수요관리와 수요개발기기 보급지원제도-1

  • 봉수균
    • 전기기술인
    • /
    • 제189권5호
    • /
    • pp.52-58
    • /
    • 1998
  • 지금까지 전통적으로 추진되어 온 공급측면 위주의 전력수급 정책은 예측된 전력수요에 효율적인 공급설비를 확충하는 것으로 이루어져왔으나 전력수요관리는 예측된 전력수요를 경감 또는 평준화함으로써 신규공급설비의 투자를 회피 또는 지연시키고 기존설비의 이용효율을 높여 전력공급비용의 절감을 가능하게 하여준다.

  • PDF

뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측 (Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting)

  • 박영진;왕보현
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.533-538
    • /
    • 2004
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한극전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간, 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고, 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

내장형 프로세서를 위한 동적 분기 예측기의 최적화 구성 (Finding Optimal Configuration of Dynamic Branch Predictors for Embedded Processors)

  • 김성은;이영림;유혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (B)
    • /
    • pp.261-266
    • /
    • 2007
  • 내장형 시스템에 보다 강력한 성능이 요구됨에 따라 내장형 마이크로 프로세서는 보다 깊은 파이프라인을 채택하고 있다. 따라서, 내장형 마이크로 프로세서는 보다 정확한 분기 예측기를 필요로 하고 있다. 이러한 상황에서 분기 예특기의 구조, 성능 및 전력 소모와 전체 시스템의 전력 소모 사이의 trade-off를 분석하는 것은 매우 중요하다. 내장형 환경에서 시스템의 전력 소모는 설계 시 매우 중요하게 고려되어야 한다. 특히 내장형 시스템의 요구사항은 동작할 응용 프로그램에 의하여 규정되고, 전력 소모도 응용프로그램의 구조와 강하게 연관되어 있다. 본 논문의 목표는 내장형 환경에서 성능-전력 공간에서 분기 예측기를 분석하는 기법을 제시하는 것에 있다. 이를 통하여, 분기 예측기 테이블의 성능-전력을 고려한 최적화된 크기를 찾을 수 있다. 이러한 목표는 수학적 모델링을 통한 정량적 예측의 수행 및 시뮬레이션 결과와의 비교를 통한 수학적 모델링의 검증의 과정을 통하여 이루어진다. 결과는 우리의 수학적 모델이 성능-전력 공간에서 분기 예측기 테이블의 최적화된 크기 결정의 해법을 제공하고 있음을 보여주고 있다.

  • PDF

특수일 분리와 예측요소 확장을 이용한 전력수요 예측 딥 러닝 모델 (Deep Learning Model for Electric Power Demand Prediction Using Special Day Separation and Prediction Elements Extention)

  • 박준호;신동하;김창복
    • 한국항행학회논문지
    • /
    • 제21권4호
    • /
    • pp.365-370
    • /
    • 2017
  • 본 연구는 전력수요 패턴이 다른 평일과 특수일 데이터가 가지는 상관관계를 분석하여, 별도의 데이터 셋을 구축하고, 각 데이터 셋에 적합한 딥 러닝 네트워크를 이용하여, 전력수요예측 오차를 감소하는 방안을 제시하였다. 또한, 기본적인 전력수요 예측요소인 기상요소에 환경요소, 구분요소 등 다양한 예측요소를 추가하여 예측율을 향상하는 방안을 제시하였다. 전체데이터는 시계열 데이터 학습에 적합한 LSTM을 이용하여 전력수요예측을 하였으며, 특수일 데이터는 DNN을 이용하여 전력수요예측을 하였다. 실험결과 기상요소 이외의 예측요소 추가를 통해 예측율이 향상되었다. 전체 데이터 셋의 평균 RMSE는 LSTM이 0.2597이며, DNN이 0.5474로 LSTM이 우수한 예측율을 보였다. 특수일 데이터 셋의 평균 RMSE는 0.2201로 DNN이 LSTM보다 우수한 예측율을 보였다. 또한, 전체 데이터 셋의 LSTM의 MAPE는 2.74 %이며, 특수 일의 MAPE는 3.07 %를 나타냈다.

전력수급계획을 위한 연간수요예측 산법 (Yearly Load Forecasting Algorithm for Annual Electric Energy Supply Plan)

  • 황갑주;주행로;이명희;안대훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.76-77
    • /
    • 2006
  • 본 연구를 통하여 전력수급계획에 필요한 연간 시간대별 총수요를 예측하는 산법을 개발하였다. 예측과정은 크게 평상일 예측과 특수일 예측으로 구분된다. 평상일의 경우는, 연중 최대수요가 발생하는 하절기 기상으로부터 연중 최대수요를 예측한 다음, 하향식 접근에 의해 주간-일간-시간대별 평상일 수요를 예측하며, 특수일 수요는 예측된 평상일 수요와 평상일 대비 상대계수 모형으로부터 예측한다. 예측의 정확도를 개선하기 위하여 시계열 자료에 가중치를 부여하고, 실적자료가 생길 때마다 자동으로 모형이 갱신되도록 하였으며, 수요예측 결과를 검증, 보정하기 위해 주간수요예측을 재수행할 수 있다. 또한 계획된 월간 전력량 제약에 협조하는 예측산법도 포함하였다.

  • PDF

DVS를 이용한 저전력 WPEG 디코더 (Low Power MPEG Decoder with DVS Algorithms)

  • 손동환;이형석;김선잔
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 추계학술발표논문집
    • /
    • pp.35-40
    • /
    • 2001
  • 동적 전압 조정(DVS)은 모바일 환경에서 프로세서에서의 전력 소모를 줄일 수 있는 가장 효율적인 방법으로 많은 연구가 진행중이다 또한 MPEG 디코딩은 모바일 기기에서 가장 중요하고 또한 전력 소모가 큰 어플리케이션 중 하나이다. 본 논문에서는 모바일 환경에 적합한 MPEG 디코더를 DVS를 이용하여 구현하였고 전력 소모를 측정하였다. 제안된 첫번째 DVS 알고리즘은 이전의 workload에 의해 다음 workload를 예측하여 전압을 조정하는 것이고, 두번째 알고리즘은 MPEG 프레임의 종류 및 크기를 이용하여 다음 프레임의 디코딩 시간을 예측 한 후 전압을 조절하는 것이다. 실험을 통하여 두번째 알고리즘에 의한 MPEG 디코더가 더 정확한 workload 예측을 통하여 QoS의 저하를 최소화하면서 전력 소모를 더 많이 줄일 수 있었다.

  • PDF

Stepwise 다중회귀분석을 이용한 최대전력수요와 기상과의 상관관계 분석 (The Relationship between Daily Peak Load and Weather Conditions Using Stepwise Multiple Regression)

  • 차지원;이동건;김현진;주성관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.475-476
    • /
    • 2015
  • 전력수요는 다양한 외부요인으로부터 영향을 받으므로 전력수요 예측 시 각 요인과의 상관관계를 고려할 필요가 있다. 본 논문은 Stepwise 다중회귀분석법을 이용한 일일 최대전력수요 예측 방법을 제시하였다. 사례연구에서는 2014년 평일 전력수요데이터를 이용하여 제안된 예측방법을 적용하고 그 결과를 평가하였다.

  • PDF

도서지역 최대 전력수요 전망 분석 (An analysis on the Maximum Electric Load Outlook for Island Areas)

  • 정현우;서인용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.489-490
    • /
    • 2015
  • 본 논문은 도서지역 전력수요 특성을 분석하고, 전력수요와 관련 있는 인자들과의 상관성 분석을 통한 도서지역의 최대 전력수요 예측 방안을 제시하였다. 과거 선행연구와의 예측 결과 비교를 통하여 예측 방안의 우수성을 검증하였고, 이를 바탕으로 도서지역 최대 전력수요 전망을 분석하였다.

  • PDF

전기철도 전력보상장치용 모델예측제어 (Model Predictive Control of Railway Power Compensator System)

  • 이정현;김우중;조종민;차한주
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.313-314
    • /
    • 2019
  • 본 논문은 전력부하 불평형 개선을 위한 전기철도용 전력보상장치의 모델예측 전류제어 알고리즘을 제안하였으며, 시뮬레이션을 통해 단상 3-Level 컨버터의 모델예측 전류제어 알고리즘 성능을 검증하였다.

  • PDF