• Title/Summary/Keyword: 전력공사

Search Result 993, Processing Time 0.034 seconds

Analyzing the Productivity of Korean Rail Transit Authorities: A Nonparametric Malmquist Approach (한국 도시철도 운영기관의 생산성 : 비모수적 Malmquist 접근법에 의한 분석)

  • Kim, Min-Jung;Kim, Sung-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.35-47
    • /
    • 2004
  • Using data envelopment analysis, this paper annually estimates Malmquist total factor productivity indices and decomposes them into productive efficiency change, technical change, and scale change components for three publicly-owned rail transit properties: the Seoul Subway Corporation(SSC), the Seoul Metropolitan Electrified Railways Sector of Korea National Railroad (SMESRS) and the Busan Urban Transit Authority (BUTA). The paper then conceptualizes that the property produces a single output(car-kilometers) using four inputs(labor, electricity, car and maintenance, and track) and uses unbalanced panel data consisted of annual observations on SSC, SMESRS and BUTA. The results show that the average annual growth rate of productivity of the three properties is 6.6 percent, which is 0.5 percent less than the average annual increasing rate of their labor price. They also show that the greatest part of the growth in productivity is explained by technical change and to a lesser degree by scale change and changes in productive efficiency though each of the three components contributes more than 20 percent to the growth in productivity, These results suggest that the three properties should base the increasing rate of their wages on the growth rate of their productivity and utilize existing technologies more efficiently prior to introducing new ones to raise their productivity, and that all the three components should be considered to evaluate their productivity more correctly.

Virtual Analysis of District Heating System Using ENetPLAN (EnetPLAN을 이용한 지역난방시스템 가상 운전 분석)

  • Ahn, Jeongjin;Lee, Minkyung;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.18-25
    • /
    • 2019
  • In this study, in order to solve the problem of the program of calculating code input by experienced users in the power generation, the wide area energy network research group developed the local heating operation analysis program EntPLAN, which can be easily used by anyone, including scalability, with domestic technology. Therefore, the Commission intended to compare the heat sources, heat demand, and the results of operation of the combined heat plant (CHP) on the energy network through simulation with the EnetPLAN and the program A on the market. The results showed that the heat and power output on the energy network of the EnetPLAN and A programs were mostly similar in pattern in the simulation results of the heat supply and the operation method of the accumulator. This enabled the application of the simulation for the various operation modes of the cogeneration facilities existing on the energy network. It is expected that EntPLAN, which was developed with domestic technology, will be easily applied in the field in the future and will present efficient operation simulation results.

A study on the effect of blasting vibration and the optimal blasting offset according to the depth of tunnel (터널 심도에 따른 발파 진동 영향 및 최적 발파 이격거리 연구)

  • Kong, Suk-Min;Choi, Sang-Il;Kim, Yeong-Bae;Noh, Won-Seok;Kim, Chang-Yong;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.483-494
    • /
    • 2022
  • Owing to the saturation of ground spaces in downtown areas, underground spaces are being developed increasingly. Underground spaces are utilized for transportation, water supply and sewerage, communication zones, electric power zones, and various cultural complexes. In Korea, for excavating underground spaces, blasting methods using gunpowder such as the New Austrian Tunneling Method (NATM) are mainly used. However, the blasting method causes vibration and noise during tunnel excavation, generating many complaints from residents in the vicinity of the excavation site. To address this problem, various methods have been developed, and recently, vibration and noise have been reduced using deep excavation. This study predicts blast vibration changes according to the depth, under the same blasting and tunnel conditions, using numerical analysis based on the blast vibration measurement data of the GTX-A route, the tunnel cross-section drawings, and ground investigation reports. Furthermore, the necessary separation distance from densely populated areas such as residential areas is suggested by analyzing the trend of decreasing blast vibration according to the distance from ground surface directly above the blasting location.

Design of Remote Field Eddy Current Sensor for Water-Wall Tube Inspection using Simulation (시뮬레이션을 활용한 유동층보일러 수냉벽튜브 검사용 원격장 와전류 탐상 센서 설계)

  • Gil, Doo Song;Kwon, Chan Wool;Cho, Yong-Sang;Kim, Hak-Joon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 2019
  • Thermal power generation accounts for the highest percentage of domestic power generation, among which coal-fired boiler generation accounts for the highest percentage. Coal boilers generate harmful substances and fine dust during coal combustion and have a serious effect on air pollution. So, fluidized-bed boilers have been introduced as eco-friendly coal boilers. It uses a fluid medium which affect the combustion temperature of coal. Because of it fluidized-bed boilers emit less pollutants than original one. Water-wall tubes play an important role in this fluidized bed boiler. Due to the fluid medium, the wall damage is more severe than the existing boiler. However, there is no quantitative maintenance technique in Korea yet. Remote field eddy current testing is a non-destructive evaluation technique that is often used for inspection of inner and outer wall of tube. it can inspect with non-contact and high speed. However, it is an inspection that proceeds from inside the pipe, and the water-wall tube is not able to enter the interior. In this study, we designed and simulated an external remote field eddy current sensor suitable for water-wall tube of a fluidized - bed boiler using simulations. By obtaining a signal similar to the existing remote field eddy current test, the criteria for the external remote field eddy current sensor design can be presented.

Development of Eco-friendly Electric Transmission Towers in KEPCO (환경조화형 철탑 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.135-140
    • /
    • 2019
  • Lattice towers and tubular steel poles have been commonly used for electrical power transmission in Korea. They are durable, structurally stable, simple and can easily be constructed in limited spaces. However, residents are opposed to construct transmission lattice towers in their areas because they are not visually attractive, and electrical field occur at the transmission lines. Underground transmissions have been used instead of the traditional towers to resolve these problems, however they are not cost effective to construct and run. Therefore, we have developed eco-friendly towers that are more attractive, well blending into the surrounding environment, and much more economical than underground transmissions. There are four categories of the eco-friendly electric transmission towers about design aspects. Firstly, there is decoration type such as tree tower and ensemble tower. Tree tower looks like actual trees with leaves and branches so it blends into surroundings. Ensemble towers were designed after pair of crane birds. Those towers have decoration features and art works. Structural examination and manufacturing this type would be very similar to the conventional transmission towers. Secondly, there is arm design type such as traditional tower. Design features are added to the existing towers. As partial design can be adoptable on these types, it can easily meet height regulations and attach to conventional lattice towers and tubular steel poles. Also, these towers are more economical than others. Third category is multipurpose type such as Sail Tower. These towers have simple pole or tubular structure with features which can be used as information message board, public relations and much more. This type will face greater wind pressure because of the area of the board, also visibility must take into consideration. Lastly, there is moulding type such as arc pylon. It is different shape to the conventional towers - lattice towers and tubular steel poles. Dramatic design changes have been adapted - from a hard and static tower to a soft and curved tower. These towers will well stand out in the field. However, structural examination and manufacturing this type would be difficult and costly. Also certain towers of this type would require scaffolding or false work to construct, which will result in limitations of the construction area. This paper shows KEPCO 154 kV Sail tower in detail. KEPCO 154 kV Sail tower that is included in fabrication of sample tower and tower testing has developed and the results are presented in this paper. We hope that sail tower is also considered as a solution to have public acceptance or to create a familiar atmosphere among towers and people in coastal area.

A Study on the Safety Distance of the Fuelling Facilities by the Radiation Heat in the Fire at the Gas Station (주유소 내 부대시설 화재발생시 복사열에 따른 주유설비 안전거리에 관한 연구)

  • Kim, Kisung;Lee, Sangwon;Song, Dongwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.7-13
    • /
    • 2021
  • Various research has been done on fires and explosions at gas stations at home and abroad. However, only studies of off-site damage in the event of fire at the gas station were conducted, and research on fire at the auxiliary facilities in the gas station was insufficient. The gas station is a place where anyone can easily access dangerous goods. As the risk of fire increases due to the recent increase of auxiliary facilities such as convenience stores and car repair shops in gas stations, it is important to detect the effects of fire on the main oil refinery in case of fire and to verify the validity of existing regulations. In this thesis, we conducted a study to find out the effect of radiation heat on the separation between fixed and fixed oil reactors in the event of fire at an auxiliary facility. Simulation was modelled using FDS 5.5.3 Version, and the size of the fire source was configured with 13 fire assessment devices and the heat emission rate per unit area was entered. Simulation shows that the separation distance of 2 m does not secure the safety of the gas pump in the event of fire at the auxiliary facilities, and radiation heat does not damage at the separation distance of at least 4 m. Accordingly, facilities that can block radiant heat in the event of fire at auxiliary facilities, and measures to limit the use of auxiliary facilities or to re-impose the separation between buildings and fixtures will be needed.

Evaluation of engineering characteristics and field applicability of inorganic thixotropic-grout for backfilling of shield TBM tail voids (쉴드 TBM 뒤채움용 무기계 가소성 그라우트의 공학적 특성 및 현장적용성 평가)

  • Kim, Dae-Hyeon;Jung, Du-Hwoe;Jeong, Gyeong-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.75-85
    • /
    • 2010
  • The focus of this study is to evaluate the field applicability of the newly developed inorganic thixotropic-grout in various ways. In order to do this, the volume stability and the permeability of the inorganic thixotropic-grout have been measured and compared to the existing silica type grouts. In addition, the filling capability of the grout into the tail void has been evaluated through both an experiment with a miniature tail-void filling equipment and a test filling at the shield TBM construction site. The volume loss of the inorganic thixotropic-grout after a 14 day-curing under the atmosphere condition was appeared to be minimal. The excellent waterproofing ability of the inorganic thixotropic-grout was confirmed through a permeability test. The toxicity of the inorganic thixotropic-grout has been evaluated through a toxicity test of aquatic fishes (KS M 0111) and the pH value of the liquid eluviated from inorganic thixotropic-grout was measured as an average of 8.0 and a fatality rate of goldfish after 96 hours was 10% or so. The existence of harmful heavy metals in the liquid eluviated from the inorganic thixotropic-grout has been also examined through an atomic absorption spectroscopy (AAS) test. Any of harmful heavy metals were not detected and the detected level of $Cr^{6+}$ and Cd was far below the standard. Based on both an experiment with a miniature tail-void filling equipment and a test filling at the shield TBM construction site, the filling ability of inorganic thixotropic-grout into the tail void was proved to be excellent.

A study on the Convergence of Culture and Technology Contents of Traditional Old Capital, Kyoto - Focused on the Lake Biwa Canal - (전통 고도(古都) 교토(京都)의 문화기술 융합 콘텐츠 연구 - 비와코(琵琶湖) 운하를 중심으로 -)

  • Park, Eun Soo;Kim, Ji Eun
    • Korea Science and Art Forum
    • /
    • v.16
    • /
    • pp.157-169
    • /
    • 2014
  • Lake Biwa Canal was a dream project that reminds us the passion and innovation of Kyoto Citizens more than water supply. It is a modernization project combining engineering knowledge and scientific technology, which started transportation by ship through big-scale civil construction as well as supplying electricity as the first waterpower plant in Japan, and it overcame the physiographic limit through adopting unique method of waterway transportation. Lake Biwa Canal, which has tangible and intangible culture heritage value as the traditional space of Kyoto, the Old Capital of 1200 years, conceives a cultural meaning that is connected through various mutual relation as well as scientific technologic factor. Lake Biwa Canal is not only the function for supplying water to gardens and temples of Kyoto region, but it is also a cultural fruit that is formed by complex causal relationship of various contents such as geographical and environmental background, the phases of the times, local development policy, political circumstances and religions. This study is aimed at interpreting the value of Lake Biwa Canal multilaterally by the convergence of cultural and technological aspects through the view of the world which the age tried to pursue, focusing on the construction of Lake Biwa Canal which was accomplished in the process of promoting the modernization of Kyoto.

Performance Evaluation of K-based Solid Sorbents Depending on the Internal Structure of the Carbonator in the Bench-scale CO2 Capture Process (벤치급 CO2 포집공정에서 흡수반응기의 내부구조에 따른 K-계열 고체흡수제의 성능평가)

  • Kim, Jae-Young;Lim, Ho;Woo, Je Min;Jo, Sung-Ho;Moon, Jong-Ho;Lee, Seung-Yong;Lee, Hyojin;Yi, Chang-Keun;Lee, Jong-Seop;Min, Byoung-Moo;Park, Young Cheol
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.419-425
    • /
    • 2017
  • In this study, the performance characteristics of the K-based sorbents (KEP-CO2P2, KEPCO RI, Korea) has been studied in relation with the heat exchanger structure and shape in a mixing zone of the carbonator in the bench-scale dry $CO_2$ capture process. Two types of heat exchangers (different structure and shape) were used in the carbonator as CASE 1 and CASE 2, in which the experiment has been continuously performed under the same operating conditions. During the continuous operation, working temperature of carbonator was 75 to $80^{\circ}C$, that of regenerator was 190 to $200^{\circ}C$, and $CO_2$ inlet concentration of the feed gas was 12 to 14 vol%. Especially, to compare the dynamic sorption capacity of sorbents, the differential pressure of the mixing zone in the carbonator was maintained around 400 to 500 mm $H_2O$. Also, solid samples from the carbonator and the regenerator were collected and weight variation of those samples was evaluated by TGA. The $CO_2$ removal efficiency and the dynamic sorption capacity were 64.3% and 2.40 wt%, respectively for CASE 1 while they were 81.0% and 4.66 wt%, respectively for CASE 2. Also, the dynamic sorption capacity of the sorbent in CASE 1 and CASE 2 was 2.51 wt% and 4.89 wt%, respectively, based on the weight loss of the TGA measurement results. Therefore, It was concluded that there could be a difference in the performance characteristics of the same sorbents according to the structure and type of heat exchanger inserted in the carbonator under the same operating conditions.

Power Generation Performance Evaluation according to the Vehicle Running on the Hybrid Energy Harvesting Block (하이브리드 에너지하베스팅 블록의 차량주행 발전성능 평가)

  • Kim, Hyo-Jin;Park, Ji-Young;Jin, Kyu-Nam;Noh, Myung-Hyun
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • Energy harvesting technique is to utilize energy that is always present but wasted. In this study, we have developed the energy harvester of the hybrid method utilizing both vibration and pressure of the vehicle traveling a road or parking lot. In the previous study, we have developed a prototype energy harvester, improved hybrid energy harvester, and developed a final product that offers improved performance in the hybrid module. The results were published in the previous paper. In this study, we installed the finally developed hybrid module in the actual parking lot. And we measured the power generation performance due to pressure and vibration, and the running speed of the vehicle when the vehicle is traveling. And we compared the results with those obtained in laboratory conditions. In a previous study performed in laboratory conditions the maximum power of the energy block was 1.066W when one single time of vibration, and 1.830W when succession with 5 times. On the other hand, in this study, we obtained the average power output of 0.310W when the vehicle is running at an average 5 km/h, 0.670W when at an average 10 km/h, and 1.250W when at an average 20 km/h, and 2.160W when at an average 5 km/h. That is, the higher the running speed of the vehicle has increased power generation performance. However, when compared to laboratory conditions, the power generation performance of the energy block in driving speed by 20km/h was lower than those in laboratory conditions. In addition, when compared to one time of vibration of laboratory conditions, power generation performance was higher when the running speed 20km/h or more and when five consecutive times in laboratory conditions, it was higher when the running speed 30km/h or more. It could be caused by a difference of load conditions between the laboratory and the actual vehicle. Thus, applying the energy block on the road would be more effective than that on the parking lot.