• Title/Summary/Keyword: 전력공사

Search Result 993, Processing Time 0.023 seconds

Improvement of Microwave Water Surface Current Meter and its Commercialization (전자파표면유속계의 성능개선 및 실용화)

  • Kim, Young-Sung;Lee, Hyun-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.85-85
    • /
    • 2011
  • 홍수기에 안전하고 정확한 유량측정을 통하여 물관리에 필요한 기초수문자료를 확보하고자 한국수자원공사에서 1993년도부터 홍수유량측정기술 확보를 위한 연구를 시작하였다. 그간의 연구성과를 바탕으로 1999년도에 하천의 유속을 비접촉식으로 측정할 수 있는 홍수용 전자파표면유속계를 개발하여 특허등록하였고 그와 동시에 이의 상품화를 추진하여 2010년도까지 75대를 보급하여 실무에서 이용하고 있다. 이동식인 홍수용 전자파표면유속계를 바탕으로 2001년도에는 고정식 실시간 홍수유량측정측정시스템을 개발하여 특허등록하였고, 이 시제품을 현재 용담 수자원시험유역의 동향지점에서 시험운영하고 있다. 또한, 현장 유량측정실무자들의 홍수용 전자파표면유속계 개선요구에 따라 편각용 전자파표면유속계 시제품을 개발하였으며, 이는 임의의 한 지점에 설치한 한 대의 장비로 좌우 여러 측선의 유속을 동시에 측정할 수 있는 다점 측정기능을 갖도록 성능을 개선하였다. 이에 따라 홍수시 유량측정에 소요되는 시간이 줄어들어 신속하게 유량측정을 완료할 수 있는 계기를 마련하였다. 이와 더불어 유속측정 범위를 확장하여 홍수시의 고유속 뿐만 아니라 0.5 m/s 이하의 저유속까지 측정할 수 있는 범용 전자파표면유속계의 시제품을 추가로 개발하였다. 이 장비는 최저유속 0.03 m/s의 측정을 실내시험을 통하여 입증하였다. 범용 전자파표면유속계는 상품화 시제품의 개발을 목표로 기존 시제품의 현장시험을 통하여 현장적용상의 문제점에 대한 해결에 주력하였다. 첫째, 평갈수용 전자파표면유속계의 사용편의를 개선하기 위하여 소형화 및 경량화를 추진하였고, 이를 위하여 사용주파수를 기존의 10 GHz에서 24 GHz로 변경함으로써 $35{\times}35\;cm$ 크기의 기존안테나를 $22{\times}22\;cm$ 크기로 소형화하였으며 송수신부의 무게는 기존 18 kg에서 3.3 kg으로 혁신적으로 줄이는데 성공하였다. 이를 위하여 안테나는 기존의 반사형안테나에서 도파관슬롯배열안테나로 변경하였다. 둘째, 측정값의 안정화를 위하여 안테나의 특성을 개선하여 부엽(side-lobe) 레벨 30 dB 이하 그리고 전후방비(front-back ratio) 50 dB 이하로 개선하여 안테나가 지향하는 방향 이외의 위치에서 반사되는 불필요한 신호를 줄였다. 또한 적응형 이득제어(adaptive gain control)기법의 채택으로 미소 신호에 대한 안정적 측정 및 과다 신호에 대한 능동적 감쇄를 할 수 있도록 시스템을 구성하여 전 유속범위에 대한 안정적 측정을 가능토록 설계 및 제작하였다. 셋째, 자가점검 기능을 탑재하여 유속측정 전에 기기의 상태에 대한 self test기능을 통하여 측정자가 기기의 상태를 사전에 파악 가능토록함으로써, 기기 오작동에 대한 능동 대처할 수 있도록 하였다. 이외에도 저전력 회로설계를 통하여 배터리 사용시간을 확장하였고, 기존의 전자파표면유속계가 가지고 있던 방습 및 방수에도 내성을 갖는 제품으로 설계하였으며 스마트기기를 이용한 무선측정 및 세련된 디자인 등 사용자의 요구사항을 충분히 반영하였다.

  • PDF

Global Trend of CO2 Capture Technology Development (이산화탄소 포집기술 국외 기술개발 동향)

  • Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.143-165
    • /
    • 2016
  • The amount of greenhouse gas emission reduction based on INDCs (Intended Nationally Determined Contributions) submitted to UN by each party is not sufficient to achieve the Paris Agreement's aim to "hold the increase in the global average temperature to well below $2^{\circ}C$ above pre-industrial levels and to pursue efforts to limit the temperature increase to $1.5^{\circ}C$" which was determined in the $21^{st}$ Conference of the Parties to the UNFCCC (COP 21). Accordingly, the emission reduction target of each party will be revised for the $2^{\circ}C$ goal. Among the several options to reduce the carbon emission, CCS (Carbon Capture and Storage) is a key option to curb $CO_2$ emissions from large emission sources such as fossil-based power plants, cement plants, and steel production plants. A large scale CCS demonstration projects utilizing $1^{st}$ generation $CO_2$ capture technologies are under way around the world. It is anticipated, however, that the deployment of those $1^{st}$ generation $CO_2$ capture technologies in great numbers without government support will be difficult due to the high capture cost and considerable increase of cost of electricity. To reduce the carbon capture cost, $2^{nd}$ and $3^{rd}$ generation technologies are under development in a pilot or a bench scale. In this paper, current status of large scale CCS demonstration projects and the $2^{nd}$ and $3^{rd}$ generation capture technologies are summarized. Novel capture technologies on wet scrubbing, dry sorbent, and oxygen combustion are explained in detail for all capture areas: post-combustion capture, pre-combustion capture, and new combustion technologies.

Effect Analysis for Frequency Recovery of 524 MW Energy Storage System for Frequency Regulation by Simulator

  • Lim, Geon-Pyo;Choi, Yo-Han;Park, Chan-Wook;Kim, Soo-Yeol;Chang, Byung-Hoon;Labios, Remund
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.227-232
    • /
    • 2016
  • To test the effectiveness of using an energy storage system for frequency regulation, the Energy New Business Laboratory at KEPCO Research Institute installed a 4 MW energy storage system (ESS) demonstration facility at the Jocheon Substation on Jeju Island. And after the successful completion of demonstration operations, a total of 52 MW ESS for frequency regulation was installed in Seo-Anseong (28 MW, governor-free control) and in Shin-Yongin (24 MW, automatic generation control). The control system used in these two sites was based on the control system developed for the 4 MW ESS demonstration facility. KEPCO recently finished the construction of 184 MW ESS for frequency regulation in 8 locations, (e.g. Shin-Gimjae substation, Shin-Gaeryong substation, etc.) and they are currently being tested for automatic operation. KEPCO plans to construct additional ESS facilities (up to a total of about 500 MW for frequency regulation by 2017), thus, various operational tests would first have to be conducted. The high-speed characteristic of ESS can negatively impact the power system in case the 500 MW ESS is not properly operated. At this stage we need to verify how effectively the 500 MW ESS can regulate frequency. In this paper, the effect of using ESS for frequency regulation on the power system of Korea was studied. Simulations were conducted to determine the effect of using a 524 MW ESS for frequency regulation. Models of the power grid and the ESS were developed to verify the performance of the operation system and its control system. When a high capacity power plant is tripped, a 24 MW ESS supplies power automatically and 4 units of 125MW ESS supply power manually. This study only focuses on transient state analysis. It was verified that 500 MW ESS can regulate system frequency faster and more effectively than conventional power plants. Also, it was verified that time-delayed high speed operations of multiple ESS facilities do not negatively impact power system operations. It is recommended that further testing be conducted for a fleet of multiple ESSs with different capacities distributed over multiple substations (e.g. 16, 24, 28, and 48 MW ESS distributed across 20 substations) because each ESS measures frequency individually. The operation of one ESS facility will differ from the other ESSs within the fleet, and may negatively impact the performance of the others. The following are also recommended: (a) studies wherein all ESSs should be operated in automatic mode; (b) studies on the improvement of individual ESS control; and (c) studies on the reapportionment of all ESS energies within the fleet.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

Effect of Fast Charging Mode on the Degradation of Lithium-Ion Battery: Constant Current vs. Constant Power (정전류/정출력 고속충전 방식에 따른 리튬이온전지의 열화 비교 연구)

  • Park, Sun Ho;Oh, Euntaek;Park, Siyoung;Lim, Jihun;Choi, Jin Hyeok;Lee, Yong Min
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.173-179
    • /
    • 2020
  • Electric vehicles (EVs) using lithium secondary batteries (LIBs) with excellent power and long-term cycle performance are gaining interest as the successors of internal combustion engine (ICE) vehicles. However, there are few systematic researches for fast charging to satisfy customers' needs. In this study, we compare the degradation of LIB where its composition is LiNi0.5Co0.2Mn0.3/Graphite with the constant current and constant power-charging method. The charging speed was set to 1C, 2C, 3C and 4C in the constant current mode and the value of constant power was calculated based on the energy at each charging speed. Therefore, by analyzing the battery degradation based on the same charging energy but different charging method; CP charging method can slow down the battery degradation at a high rate of 3C through the voltage curve, capacity retention and DC-IR. However, when the charging rate was increased by 4C or more, the deviation between the LIBs dominated the degradation than the charging method.

Study on Analysis of Transfer Torque and Improvement of Transfer Torque in Non-Contact Permanent Magnet Gear (비접촉 영구자석 기어의 전달토크 분석 및 전달토크 향상에 대한 연구)

  • Park, Gyu-Sang;Kim, Chan-Ho;Kim, Yong-Jae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.181-188
    • /
    • 2015
  • The non-contact permanent magnet gear has advantages of high efficiency and improved reliability. It has other advantages of no mechanical friction loss, very little noise and vibration, and no need for lubricant. With these advantages, the non-contact permanent magnet gear that solves the physical contact problem of the mechanical gear has drawn attention. Due to this unique non-contact characteristic, the non-contact permanent magnet gear which is capable of non-contact torque transmission has replaced mechanical gear. The mechanical gears which is in many fields of the modern industry, is used mostly for power transmitting mechanical devices. However, it also has the problem of a low torque density, which requires improvement. In this paper, a novel pole piece shape is proposed in order to improve the problem of low torque density of the non-contact permanent magnet gear. The experiment data required for predicting the relationships among them are obtained using finiteelement Operating method based on two-dimensional (2-D) numerical analysis. Therefore, this paper derived an optimal model for thenon-contact permanent magnet gear with the novel pole piece using the Box-Behnken design, and the validity of the optimal design of the proposed pole piece shape through variance analysis and regression analysis demonstrated. In this paper, we performed the thransfer torque analysis in order to improve the torque density and power density, we have performed on optimal design of proposed pole piece shape using box-behnken.

Controlling the Properties of Graphene using CVD Method: Pristine and N-doped Graphene (화학기상증착법을 이용한 그래핀의 물성 조절: 그래핀과 질소-도핑된 그래핀)

  • Park, Sang Jun;Lee, Imbok;Bae, Dong Jae;Nam, Jungtae;Park, Byung Jun;Han, Young Hee;Kim, Keun Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.169-174
    • /
    • 2015
  • In this research, pristine graphene was synthesized using methane ($CH_4$) gas, and N-doped graphene was synthesized using pyridine ($C_5H_5N$) liquid source by chemical vapor deposition (CVD) method. Basic optical properties of both pristine and N-doped graphene were investigated by Raman spectroscopy and XPS (X-ray photoemission spectroscopy), and electrical transport characteristics were estimated by current-voltage response of graphene channel as a function of gate voltages. Results for CVD grown pristine graphene from methane gas show that G-peak, 2D-peak and C1s-peak in Raman spectra and XPS. Charge neutral point (CNP; Dirac-point) appeared at about +4 V gate bias in electrical characterization. In the case of pyridine based CVD grown N-doped graphene, D-peak, G-peak, weak 2D-peak were observed in Raman spectra and C1s-peak and slight N1s-peak in XPS. CNP appeared at -96 V gate bias in electrical characterization. These result show successful control of the property of graphene artificially synthesized by CVD method.

Study on the 2G High Temperature Superconducting Coil for Large Scale Superconducting Magnetic Energy Storage Systems (대용량 에너지 저장장치용 2세대 고온 초전도 코일의 특성해석)

  • Lee, Ji-Young;Lee, Seyeon;Kim, Yungil;Park, Sang Ho;Choi, Kyeongdal;Lee, Ji-Kwang;Kim, Woo-Seok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.157-162
    • /
    • 2015
  • Large scale superconducting magnetic energy storage (SMES) system requires very high magnetic energy density in its superconducting coils to enhance the energy capacity and efficiency of the system. The recent high temperature superconducting (HTS) conductors, so called 2G conductors, show very good performance under very high magnetic field so that they seem to be perfect materials for the large scale SMES coils. A general shape of the coil system with the 2G HTS conductor has been a tor oid, because the magnetic field applied perpendicularly to the surface of the 2G HTS conductor could be minimized in this shape of coil. However, a toroid coil requires a 3-dimensional computation to acquire the characteristics of its critical current density - magnetic field relations which needs very complicated numerical calculation, very high computer specification, and long calculation time. In this paper, we suggested an analytic and statistical calculation method to acquire the maximum magnetic flux density applied perpendicularly to the surface of the 2G HTS conductor and the stored energy in the toroid coil system. Although the result with this method includes some errors but we could reduce these errors within 5 percent to get a reasonable estimation of the important parameters for design process of the HTS toroid coil system. As a result, the calculation time by the suggested method could be reduced to 0.1 percent of that by the 3-dimensional numerical calculation.

Hydrothermally Synthesis Nanostructure ZnO Thin Film for Photocatalysis Application (수열합성법으로 합성된 산화아연 나노 구조 박막의 광촉매적 응용)

  • Shinde, N.M.;Nam, Min Sik;Patil, U.M.;Jun, Seong Chan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.97-101
    • /
    • 2016
  • ZnO has nanostructured material because of unique properties suitable for various applications. Amongst all chemical and physics methods of synthesis of ZnO nanostructure, the hydrothermal method is attractive for its simplicity and environment friendly condition. Nanostructure ZnO thin films have been successfully synthesized on fluorine doped tin oxide (FTO) substrate using hydrothermal method. A possible growth mechanism of the various nanostructures ZnO is discussed in schematics. The prepared materials were characterized by standard analytical techniques, i.e., X-ray diffraction (XRD) and Field-emission scanning electron microscopy (SEM). The XRD study showed that the obtained ZnO nanostructure thin films are in crystalline nature with hexagonal wurtzite phase. The SEM image shows substrate surface covered with nanostructure ZnO nanrod. The UV-vis absorption spectrum of the synthesized nanostructure ZnO shows a strong excitonic absorption band at 365 nm which indicate formation nanostructure ZnO thin film. Photoluminescence spectra illustrated two emission peaks, with the first one at 424 nm due to the band edge emission of ZnO and the second broad peak centered around 500 nm possibly due to oxygen vacancies in nanostructure ZnO. The Raman measurements peaks observed at $325cm^{-1}$, $418cm^{-1}$, $518cm^{-1}$ and $584cm^{-1}$ indicated that nanostrusture ZnO thin film is high crystalline quality. We trust that nanostructure ZnO material can be effectively will be used as a highly active and stable phtocatalysis application.

Field Application of RFID for the Cavity Maintenance of Under Pavement (도로하부 공동의 유지관리를 위한 RFID의 현장 적용성 평가)

  • Park, Jeong Jun;Shin, Eun Chul;Kim, In Dae
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.459-468
    • /
    • 2019
  • Purpose: The cavity exploration of the lower part of the road is carried out to prevent ground-sinking. However, the detected communities cannot be identified by the cavity location and history information, such as repackaging the pavement. Therefore, the field applicability of RFID systems was evaluated in this study to enable anyone to accurately identify information. Method: During temporary recovery, tag recognition distance and recognition rate were measured according to underground burial materials and telecommunication tubes using RFID systems with electronic tag chips attached to the bottom of the rubber cap. Result: The perceived distance and perceived rate of depth for each position of the electron tag did not significantly affect the depth up to 15cm, but it did have some effect if the depth was 20cm. In addition, water effects from nearby underground facilities and rainfall are relatively small, and the effects of wind will need to be considered during the weather conditions of the road. Conclusion: The RFID tags for field application of the pavement management system store various information such as location and size of cavity, identification date, cause of occurrence, and surrounding underground facilities to maximize cavity management effect with a system that can be computerized and mobile utilization.