• Title/Summary/Keyword: 전동 지게차 모터

Search Result 4, Processing Time 0.022 seconds

A Study on the Characteristic of Noise and Vibration in 3-Phase Induction Motor for the Forklift (전동 지게차용 3 상 유도 모터의 소음 진동 특성에 대한 연구)

  • Kim, Woo-Hyung;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.764-769
    • /
    • 2007
  • This paper is studied the noise and vibration characteristics analysis of the three-phase induction AC motor of the electrical forklift. And we suggest the method which the reduction orders the noise and vibration to be the mechanical. In other to investigate these characteristics, we considered the mechanical characteristics, the electromagnetic effects, and these interactions. In mechanical, we studied the characteristic of the stator, the bearing supported condition of the rotor, and the sound radiation. In electronically, this paper is considered the harmonic effect which is related the magnetic motive force (mmf) with respect to the characteristic of the slot number of the rotor and the stator and the pole number of the motor. Finally we investigated the overall noise and vibration of the induction motor by relations between the electronically harmonic and the mechanical resonance of the stator. By the analysis of the generally three-phase induction motor, we suggest the design methodology to low noise and vibration.

  • PDF

A Study on the Characteristic of Noise and Vibration in 3-phase Induction Motor for the Forklift (전동 지게차용 3상 유도 모터의 소음 진동 특성에 대한 연구)

  • Kim, Woo-Hyung;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • This paper presents the reduction of acoustic noise generated by electromagnetic force in an induction motor of the electrical forklift. After summarizing the electromagnetic excitation forces due to the interaction between the stator/rotor slot permeance and the stator winding magnetomotive force, the effects of the electromagnetic force on the noise and vibration of an induction motor are analyzed. In order to experimentally identify the noise sources of the motor, the signal analyses for noise and vibration are performed by using waterfall plots of noise and vibration spectrums. It is found that severe noise and vibration are caused by the electromagnetic force when the mode number of the excitation shape for a stator is low. Furthermore, it is verified that the motor noise is amplified if the excitation frequency of the electromagnetic force coincides with one of the natural frequencies of the stator. It is experimentally demonstrated that this severe noise can be considerably reduced by structure modifications. Finally, some design guidelines are suggested to develop an induction motor with a low level of noise.

A Study on the Regeneration Efficiency of the Electric Forklift Using the Variable Hydraulic Motor (가변 유압모터를 이용한 전동지게차 리프트회생 효율에 관한 연구)

  • Park, Yong Soo;Yu, Ying-Xiao;Yun, Jin Su;Do, Tri Cuong;Han, Sung Min;Shin, Jung Woo;Yu, Choong Mok;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.26-32
    • /
    • 2020
  • In modern society, the energy-saving problem of industrial vehicles is economically and environmentally critical. Energy savings using the potential energy of forklifts are one of the viable solutions to resolving this problem. The basic concept of this study is to operate the hydraulic motor and recharge the battery using the flow rate from the cylinder when loading heavy objects and lowering the fork. To save energy, the torque and rotational speed of the generator should be optimized according to the load and descent speed to increase efficiency. To this end, we propose a system that optimizes energy saving efficiency by controlling the swashplate angle of the variable hydraulic motor through the GA(Genetic-Algorithm). The results were verified by building and comparing fixed motor models and variable motor models using the AMEsim. The results of the study show that the proposed optimized swashplate angle increases the energy saving efficiency by approximately 6%-8%, depending on the working conditions.

Study on Fuzzy Control of Electric Car via TMS320F240 (TMS320F240 칩을 이용한 전동차의 퍼지 주행 제어기에 대한 연구)

  • Son, J.W.;Choi, S.M.;Song, D.K.;Kim, J.K.;Bae, J.I.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2381-2383
    • /
    • 1998
  • 직류직권모터는 전동지게차와 같은 물류용 전동차에서 사용되는데, 우수한 기동 토오크를 가지는 반면에 파라미터의 열적, 변화가 심하고 마찰과 부하의 비선형성이 존재해 기존의 제어기로는 만족할 만한 성능을 내지 못한다. 본 논문에서는 이를 해결하기 위해 퍼지제어기를 사용한다. 퍼지제어기는 변수의 애매성에 바탕을 두고 제어하기 때문에 이러한 비선형성에 대해 강인하나, 소속함수의 결정과 퍼지규칙의 선정이 어려우며, 체계적인 방법이 존재하지 않는다. 이러한 퍼지제 어의 결점을 해결하기 위해 소속함수는 유전 알고리즘을 통해 자기동조 시키며 퍼지규칙은 오차와 오차변화율의 위상평면을 이용하여 결정한다. 실용성을 검증하기 위해 TI사의 DSP TMS320F240을 이용해 실시스템에 적용했으며, 이를 통해 부하의 변동 및 기준 속도의 변화에도 잘 대처함을 알 수가 있었다.

  • PDF