• Title/Summary/Keyword: 전도성 복합재료

Search Result 154, Processing Time 0.026 seconds

Fabrication of Electroconductive $Si_3N_4$-TiN Ceramic Composites by In-Situ Reaction Sintering (In-Situ 반응소결에 의한 전도성 $Si_3N_4$-TiN 복합세라믹스 제조)

  • Lee, Byeong-Taek;Yun, Yeo-Ju;Park, Dong-Su;Kim, Hae-Du
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.577-582
    • /
    • 1999
  • In order to make the electroconductive $Si_3N_4$-TiN composities, the Si-Ti(N) compacts were nitrided at $1450^{\circ}C$ for 20hours, and then they were post-sintered by a gas-pressure-sintering technique at 1TEX>$1950^{\circ}C$ for 3.5 hours. As starting powders, commercial si powder of about $10\mu\textrm{m}$, two types of Ti powders of 100 and 325 mesh, and fine-sized TiN of $2.5\mu\textrm{m}$ powders were used. In the $Si_3N_4$-TiN sintered bodies used Ti powders, the relative density and fracture strength and electrical conductivity are low due to the existence of large amounts of coarse pores. However, in the $Si_3N_4$-TiN composite used TiN powder, the fracture toughness, fracture strength and electrical resistivity were $5.0MPa{\cdot}m^{1/2}$, 624MPa and $1400{\omega}cm$, respectively. The dispersion of TiN particles in the composite inhibited the growth of $Si_3N_4$ in the shape of rod and made strong strain field contrasts at the $Si_3N_4$-TiNinterfaces. It was recognized that microstructural control is required to improve the electrical conductivity and mechanical properties of $Si_3N_4$-TiN composites by dispersing TiN particles homogeneously.

  • PDF

Literature Review on Material Development and Performance Evaluation Method for EMP Shielding Concrete (EMP 차폐 콘크리트 개발 및 성능평가 방법에 관한 문헌 연구)

  • Lee, Woong-Jong;Lee, Hwan;Kim, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.67-76
    • /
    • 2020
  • The purpose of this study was to derive the directionality of technology development of high-power electromagnetic pulse (EMP) shielding concrete and standardization of a shielding performance evaluation method. Because the EMP shielding mechanism of concrete has not been identified clearly, and the verification method for EMP shielding performance has not been standardized, it is difficult to compare the research results between researchers. The development direction of EMP shielding concrete was derived from a consideration of the electromagnetic wave loss mechanism of metal. The standardization direction for verifying the EMP shielding performance of concrete was derived from a consideration of the electrical properties of concrete and the shielding performance evaluation methods of previous studies. As a result, the development of electrically conductive concrete is required, and test methods classified by the electromagnetic wave loss mechanism should be applied. For quality verification, the development of EMP shielding concrete will be feasible and its performance can be evaluated if a test method referencing the generalized shielding evaluation method (MIL-STD, etc.) is applied.

A study on Manufacture of EMI Composite Powder by the Electroless Ni Plating Method (무전해 니켈도금방법을 이용한 EMI 복합분말제조에 관한 연구)

  • Joung, I.;Yoon, S.R.;Han, S.N.;Na, J.H.;Kim, C.W.
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.444-449
    • /
    • 1998
  • There are various shielding materials that have been considered; the use of a metallic plate or the layering of a conductive material on a plastic surface and the insertion of filler in plastics. All of these methods have shown their merits and weakness. Therefore, many studies have concentrated on developing materials that effectively cut down EMI without increase in weights of housing materials. In these respects, this study has focused on investigations of the shielding effect of materials that have electroless nickel plating on the lamella structured micro particles surface with low specific gravity. When a film of electroless nickel were plated on a micro particle surfaces and then mixed with paint, the electromagnetic shielding effects were measured as 63dB. Although these effects were less than that 90dB of the copper plate, trials in a series of 6 times increased the shielding effect by IOdB and is applicable to wide range of EMI shielding.

  • PDF

Recent Advances in Electric Stimulus-Responsive Soft Actuators (전기자극 감응형 소프트 액추에이터의 최신 동향)

  • Seong-Jun Jo;Gwon Min Kim;Jaehwan Kim
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.247-264
    • /
    • 2024
  • Recent advances in electro-active polymer (EAP) actuators, owing to their flexibility, lightweight, and simple fabrication process, have showcased their high utility across various fields such as soft robotics, biomimetics, wearable devices, and haptic technologies. Moreover, EAP actuators are evolving into smart devices with new functions and characteristics through the integration of functional materials and innovative technologies. This paper categorizes EAPs into ionic EAPs and electronic EAPs. Ionic EAPs include, most notably, ionic polymer-metal composites (IPMCs) and conducting polymers (CPs), while electronic EAPs encompass dielectric elastomer actuators (DEAs), ferroelectric polymer actuators, and the recently introduced hydraulically amplified self-healing electrostatic (HASEL) actuators. Detailed explanations based on the latest research are provided concerning the mechanism, structure, performance improvement strategies, methods for adding functionality, and application areas for each type of actuator.

Model Based Investigation of Surface Area Effect on the Voltage Generation Characteristics of Ionic Polymer Metal Composite Film (모델 기반의 이온 전도성 고분자 필름 금속 복합체의 표면적 증가에 따른 전압생성 특성 변화에 관한 연구)

  • Park, Kiwon;Kim, Dong Hyun
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.401-407
    • /
    • 2016
  • IPMC is composed of thin ion conductive polymer film sandwiched between metallic electrodes plated on both surfaces. Ionic Polymer-Metal Composite (IPMC) generates voltages when bent by mechanical stimuli. IPMC has a potential for the variety of energy harvesting applications due to its soft and hydrophilic characteristics. However, the large-scale implementation is necessary to increase the output power. In this paper, the scale-up of surface area effect on voltage generation characteristics of IPMC was investigated using IPMC samples with different surface areas. Also, a circuit model simulating both the output voltage and its offset variations was designed for estimating the voltages from IPMC samples. The proposed model simulated the output voltages with offsets well corresponding to various frequencies of input bending motion. However, some samples showed that the increase of error between real and simulated voltages with time due to the nonlinear characteristic of offset variations.

Comparative Study of Physical Dispersion Method on Properties of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites (폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 물리적 분산 방법에 따른 물성)

  • Kang, Myung Hwan;Yeom, Hyo Yeol;Na, Hyo Yeol;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.526-532
    • /
    • 2013
  • The effect of CNT dispersion method on rheological and electrical properties of polystyrene/carbon nanotube (PS/CNT) nanocomposites via latex technology was compared. The nanocomposites were prepared through freeze-drying the dispersed suspension comprised of CNTs and PS particles. In this study, physical dispersion method, either sodium dodecylsulfate (SDS) addition or polyvinyl pyrrolidone (PVP) wrapping, was employed to prevent the deterioration of intrinsic properties of CNT caused by chemical modification. The physical method applied to latex technology was very effective in CNT dispersion. With SDS addition, the enhancement of rheological properties was low compared to PVP wrapping because the properties of matrix were deteriorated due to the incorporation of low molecular weight SDS. The electrical percolation threshold of PS/SDS-stabilized CNT and PS/PVP-wrapped CNT nanocomposites was 0.23 and 0.90 wt%, respectively. The enhancement of electrical conductivity was low in the case of PVP wrapping because the non-conducting PVPs wrapped around CNT restricted the electrical connection between CNTs.

A Study on Electromagnetic Interference Shielding Effectiveness of the Aluminum film, Conductive Fabric and Nano Carbon black/Carbon Fiber Reinforced Composites (알루미늄 필름, 전도성 직조섬유/나노 카본블랙 탄소섬유복합재료의 전자파 차폐효과에 관한 연구)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • This study investigated electromagnetic interference(EMI) shielding effectiveness(SE) of the aluminum film, conductive fabric and nano carbon black carbon fiber reinforced composites. We fabricated carbon fiber reinforced composites filled with nano carbon black where they bonded aluminum film and conductive fabric. The measurements of SE were carried out frequency range from 300MHz to 1.5GHz. It is observed that the SE of the bonded aluminum film and conductive fabric composites is the frequency dependent, increase with the increase in filler nano carbon black content. The aluminum film bonded composites showed higher SE compared to that of carbon black and conductive fabric. The aluminum film bonded epoxy composite was shown to exhibit up to 80dB of SE. The result that aluminum film bonded composite can be used for the purpose of EMI shielding as well as for some microwave applications.

  • PDF

Stress-Strain Behavior and Electrical Resistive of Conductive Silver Particle/Silicone Composite Pastes with Surface Modification (표면처리에 따른 도전성 은입자/실리콘 복합 페이스트의 응력-변형율 거동 및 전기비저항 특성)

  • 이건웅;방대석;박민;조동환
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.61-67
    • /
    • 2004
  • This paper reports the electrical conductivity and the stress-strain behavior of silver particle-filled silicone composite pastes for electromagnetic interference (EMI) shielding gasket materials. The percolation threshold (critical concentration) of the composite paste obtained by incorporating irregular sphere-shaped silver particles and room temperature vulcanizing (RTV) silicone resin was determined from the electrical conductivity result. At about 28 vol% Beading of untreated silver particles, the percolation phenomenon occurred and at this critical concentration, the volumetric resistivity, the tensile strength, and the elongation of the pastes were investigated. This work also suggests that the stress-strain characteristics of a composite paste filled with metal particles above the percolation threshold may be effectively improved by properly selecting a coupling agent.

Thermal and Electrical Properties of PS/MWCNT Composite Prepared by Solution Mixing: Effect of Surface Modification of MWCNT (Solution Mixing법에 의한 PS/MWCNT 복합재료의 열 및 전기전도 특성: MWCNT 표면 개질의 영향)

  • Park, Eun-Ju;Lee, Jeong-Woo;Jung, Dong-Soo;Shim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • Herein, the effect of the dispersion uniformity of the multi-wall carbon nanotube (MWCNT) on the thermal and electrical conductivity of polystyrene (PS)/MWCNT composite was investigated. The PS/MWCNT composites were prepared by solution mixing from dispersions of various MWCNTs in PS/tetrahydrofuran (THF) solution. Three types of MWCNTs were used; pristine MWCNT, hydroxyl functionalized MWCNT, which was functionalized with $KMnO_4$ in the presence of a phase transfer catalyst at room temperature, and pristine MWCNT with BYK-9077 as a dispersant. It was found that the stable dispersion state of MWCNT in PS/THF solutions significantly improved the thermal and electrical conductivity of the ultimate composites. It is noted that the thermal and electrical conductivity of PS/3 wt% pristine MWCNT composite with BYK-9077 were about 9.4 and 30~50% higher than those of PS/3 wt% pristine MWCNT composite, respectively.

A Study on Electromagnetic Wave Absorbing Sandwich Structures (샌드위치 구조를 갖는 전자기파 흡수체에 관한 연구)

  • Park, Ki-Yeon;Lee, Sang-Eui;Kim, Chun-Gon;Lee, In;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.64-71
    • /
    • 2004
  • The object of this study is to design the Radar Absorbing Structures (RAS) having sandwich structures in the X-band ($8.2{\sim}12.4GHz$) frequencies. Glass fabric/epoxy composites containing conductive carbon blacks and carbon fabric/epoxy composites were used for the face sheets. Polyurethane(PU) foams containing multi-walled carbon nanotube (MWNT) were used for the core. Their permittivities in the X-band were measured using the transmission line technique. The reflection loss characteristics for multi-layered sandwich structures were calculated using the theory of transmission and reflection in a multi-layered medium. Three kinds of specimens were fabricated and their reflection losses in the X-band were measured using the free space technique. Experimental results were in good agreements with simulated ones in 10dB absorbing bandwidth.