• Title/Summary/Keyword: 전대역 특징추출

Search Result 3, Processing Time 0.017 seconds

Effective Feature Extraction in the Individual frequency Sub-bands for Speech Recognition (음성인식을 위한 주파수 부대역별 효과적인 특징추출)

  • 지상문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.598-603
    • /
    • 2003
  • This paper presents a sub-band feature extraction approach in which the feature extraction method in the individual frequency sub-bands is determined in terms of speech recognition accuracy. As in the multi-band paradigm, features are extracted independently in frequency sub-regions of the speech signal. Since the spectral shape is well structured in the low frequency region, the all pole model is effective for feature extraction. But, in the high frequency region, the nonparametric transform, discrete cosine transform is effective for the extraction of cepstrum. Using the sub-band specific feature extraction method, the linguistic information in the individual frequency sub-bands can be extracted effectively for automatic speech recognition. The validity of the proposed method is shown by comparing the results of speech recognition experiments for our method with those obtained using a full-band feature extraction method.

Covariance Model Based on Multi-Band for Speaker Verification in Noise (잡음 환경에서 화자 확인을 위한 다중대역에 기반한 공분산 방법)

  • Choi Min Jung;Lee Ki Yong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.127-130
    • /
    • 2004
  • 기존의 전대역(Full-Band)에서 특징 파라미터를 추출하는 화자 확인(Speaker Verification) 시스템은 저대역이나 고대역에서 화자 정보의 특징이 제거되기 쉽다. 또한, 주파수 스펙트럼에 부분적으로 오염이 되는 경우, 특징 파라미터를 왜곡시켜 화자 확인 시스템의 성능을 저하시킨다. 본 논문에서는 이러한 문제점을 해결하기 위해 다중대역 공분산 모델(Covariance Model)을 제안한다. 제안한 방법은 주파수 영역에서 전대역을 여러 개의 부대역(Sub-Band)으로 분할하고, 부대역별로 독립적으로 특징 파라미터를 추출하여 공분산 모델을 구한다. 제안된 방법의 성능 확인을 위하여 공분산 모델 간의 거리를 측정하는 화자 확인 실험을 하였다. 잡음 환경에서 기존의 방법인 전대역에 기반한 공분산 모델과 제안한 방법을 비교 분석한 결과, 제안한 방법이 기존 방법보다 $2\%$정도 성능이 향상되었다. 또한, 제안된 방법은 전대역에 기반한 파라미터 차원 수를 다중대역의 개수로 분할하여 사용하므로 계산량의 감소와 저장 공간면에서 효율적이다.

  • PDF

Feature Extraction by Optimizing the Cepstral Resolution of Frequency Sub-bands (주파수 부대역의 켑스트럼 해상도 최적화에 의한 특징추출)

  • 지상문;조훈영;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • Feature vectors for conventional speech recognition are usually extracted in full frequency band. Therefore, each sub-band contributes equally to final speech recognition results. In this paper, feature Teeters are extracted indepedently in each sub-band. The cepstral resolution of each sub-band feature is controlled for the optimal speech recognition. For this purpose, different dimension of each sub-band ceptral vectors are extracted based on the multi-band approach, which extracts feature vector independently for each sub-band. Speech recognition rates and clustering quality are suggested as the criteria for finding the optimal combination of sub-band Teeter dimension. In the connected digit recognition experiments using TIDIGITS database, the proposed method gave string accuracy of 99.125%, 99.775% percent correct, and 99.705% percent accuracy, which is 38%, 32% and 37% error rate reduction relative to baseline full-band feature vector, respectively.