• Title/Summary/Keyword: 전단 처짐

Search Result 85, Processing Time 0.023 seconds

A Study on Deflection Characteristic of Composite Girder with Incomplete Interaction (불완전 합성형의 처짐특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Kim, Yun Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.437-449
    • /
    • 1998
  • In order that the steel girder and the concrete slab act as a composite structure, the connectors must have adequate strength and stiffness. If there are no horizontal or vertical separations at the interface, the connectors are described as rigid, and complete interaction can be said to exist under these idealized circumstances. However, all connectors are flexible to some extent, and therefore incomplete interaction always exists. This paper presents a practical structural analysis of composite girders with incomplete interaction by three methods. One is the stiffness matrix method derived from the general solutions of differential equation, another is the finite element analysis that alternate method of solution treats the structure as a frame and defines the spring as an additional member, and the other is the finite element analysis using principle of virtual work. The deflection characteristic of composite girder is investigated using these three methods. Also, this paper propose a simplified procedure of estimating a degree of imperfection for a composite girder with incomplete interaction using the sectional properties of girder and spring constants of shear connectors.

  • PDF

Stiffness Test of Dowel Bar for fainted Concrete Pavement (콘크리트 포장의 다웰바 전단거동 실험)

  • Yang, Sung-Chul;Choi, Jae-Gon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • Shear test procedure for concrete-dowel interaction was proposed along with determination of dowel support reaction factor or shear spring stiffness constant using the spreadsheet example. For this task, three AASHTO-type standard specimens were prepared to simulate behavior of the jointed concrete pavement. A side support system was adopted to minimize twisting of the test specimen which had been observed in a preliminary test. A typical elastic behavior of the dowel-concrete interaction was observed from several test loops of loading, unloading and reloading procedures. However load versus slab displacement represents to be nonlinear. Test results show that the dowel support reaction factor ranges from 550-880 GN/m3, which is 1.4-2.2 times greater than 407GN/m3 proposed by Yoder and Witczak. This is because less torsional distraction was occurred with the help of a side support system adopted in this experiment. The dowel support reaction factor or shear spring stiffness constant obtained from the procedures proposed in this paper may be used as a reference data for the structural analysis of jointed concrete pavement.

  • PDF

The Shear-Properties of Reinforced Concrete Beams without Web Reinforcement (복부보강이 없는 철근콘크리트보의 전단특성)

  • 문제길;홍익표
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.151-161
    • /
    • 1993
  • 본 논문은 전단철근을 갖지 않는 비교적 짧은 지간의 철근콘크리트 보에서 전단특성을 규명하고 균열전단강도와 극한전단강도를 예측하기 위한 것으로 총30개의 보를 4 series로 나누어 실험을 수행하였다. 실험의 변수는 콘크리트의 강도, 전단지간-유효높이의 비, 인장철근량등이며, 실험과정을 통해 파괴형상, 처짐, 전단강도등을 측정하였다. 실험결과로부터 콘크리트의 강도가 커지고 철근량이 많아질수록, 그리고 전단지간이 짧아질수록 철근콘크리트 보의 균열 및 극한전단강도가 증가됨을 밝혔다. 또한, 실험성과를 회귀분석하여 균열전단강도와 극한전단강도 추정식을 제안하였다. 제안된 추정식에 의한 계산값과 실험성과를 비교 검토하여 그 상관성을 확인하였다.

Improved Curved Beam Theory for Vibration and Deflection Analyses (진동 및 처짐해석을 위한 개선된 곡선보이론)

  • Kim, Nam-Il;Choi, Jung-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.123-132
    • /
    • 2010
  • To overcome the drawback of currently available curved beam theories having non-symmetric thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is presented for the spatially coupled free vibration and elastic analyses. For this, the displacement field is expressed by introducing displacement parameters defined at the centroid and shear center axes, respectively. Next the elastic strain and kinetic energies considering the thickness-curvature effect and the rotary inertia of curved beam are rigorously derived by degenerating the energies of the elastic continuum to those of curved beam. In order to illustrate the validity and the accuracy of this study, FE solutions using the Hermitian curved beam elements are presented and compared with the results by centroid formulation, previous research and ABAQUS's shell elements.

  • PDF

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.

Effective Stiffness of Composite Beams Considering Shear Slip Effects (전단슬립 효과를 고려한 합성보의 유효강성)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.671-682
    • /
    • 2004
  • This study investigated the effects of a shear slip on the deflection of steel-concretecomposite beams with partial shear interaction. Under the guidance of various current design codes, this deflection was related to the strength of shear connectors in the composite beams. In this paper, a shear connector stiffness based on exact solutions, regardless of loading conditions, was developed. The equivalent rigidity of composite beams that considered three different loading types was first derived, based on equilibrium and curvature compatibility, from which a general formula accounting for slips was developed. To validate this approach, the predicted maximum deflection under the proposed method was compared against currently used equations to calculate beam effective stiffness (AISC)Nie's equations, which have recently been proposed. For typical beams that were used in practice, shear slips might result in stiffness reduction of up to 18% for short-span beams. For full composite sections, the effective section modulus with the AISC specifications was larger than that of the present study, which meant that the specifications were not conservative. For partial composite sections, the AISC predictions were more conservative than those in the present study.

A Study on Shear Strength Test for FRP Girder of Filled Concrete (콘크리트 충진 FRP 거더의 전단재하 실험에 관한 연구)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Kim, Woo-Jong;Kim, Hoi-Ok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.365-373
    • /
    • 2008
  • Fiber Reinforced Polymer, FRP has a light weight, a high tensile strength based on design, non-electronic, non-magnetic, and rust-resistant feature, etc and many researches are being conducted recently on FRP in the construction area. Among them, GFRP (Glass Fiber Reinforced Polymer) is excellent in price competitiveness and is widely being used. However, since GFRP has a relative low modulus of elasticity and causes excessive deflection, the section must be large to be used as a structural component and an investigative review must be carried out in design to set the limit for deflection by the use load. Therefore, in order to solve the mentioned technical problems, this study suggested a section of a module form such that application of a large-scale section is possible. Also, to secure the low rigidity of FRP, this study developed a new FRP+ concrete composite girder form that confined the concrete. To identify the structural movement of the developed FRP+ concrete composite girder, shear strength test was carried out.

A Study on the Shear Properties of Steel Fiber Reinforced Concrete Beams (강섬유(鋼纖維) 보강(補强)콘크리트보의 전단특성(剪斷特性)에 관한 연구(研究))

  • Moon, Je Kil;Hong, Ik Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.1-12
    • /
    • 1993
  • Four series of fiber reinforced concrete beams without shear reinforcement were tested to determine their cracking shear strengths and ultimate shear capacities. Results of tests on 36 reinforced concrete beams (including 21 containing steel fibers) are reported. Four parameters were varied in the study, namely, the concrete compressive strength, volume fraction of fibers, shear span-to-depth ratio, and the tensile steel reinforcement. The effects of fiber incorporation on failure modes, deflections, cracking shear strength, and ultimate shear strength have been examined. Resistance to shear stresses have been found to be improved by the inclusion of fibers. Based on these investigations, a method of computing the shear strength of steel fiber reinforced concrete beam is suggested. The comparisons between computed values and experimentally observed values are shown to verify the proposed theoretical treatment.

  • PDF

A Study on the Shear Properties of Steel Fiber Reinforced Concrete Deep Beams (강섬유보강(鋼纖維補强)콘크리트 Deep Beam의 전단특성(剪斷特性)에 관한 연구(硏究))

  • Moon, Je Kil;Hong, Ik Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.75-87
    • /
    • 1993
  • Four series of fiber reinforced concrete deep beams without shear reinforcement were tested to determine their cracking shear strengths and ultimate shear capacities. Results of tests on 20 reinforced concrete deep beams (including 16 containing steel fibers) are reported. Three parameters were varied in the study, namely, the concrete compressive strength, volume fraction of fibers, and the shear span to depth ratio. The effects of fiber incorporation on failure modes, deflections. strains, cracking shear strength, and ultimate shear strength have been examined. Resistance to shear stresses have been found to be improved by the inclusion of fibers. Based on these investigations, a method of computing the shear stress of steel fiber reinforced concrete deep beam is suggested. The comparisons between computed values and experimentally observed values are shown to validate the proposed theoretical treatment.

  • PDF

Numerical Approach to Optimize Piercing Punch and Die Shape in Hub Clutch Product (허브클러치 제품의 피어싱 펀치 및 금형 형상 최적화를 위한 수치접근법)

  • Gu, Bon-Joon;Hong, Seok-Moo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.517-524
    • /
    • 2019
  • The overdrive hub clutch is attached to a 6-speed automatic transmission to reduce fuel consumption by using the additional power of the engine. This paper proposes a means to minimize the load and roll-over ratio on the punch during the piercing process for the overdrive hub clutch product. Die clearance, shear angle, and friction coefficient, which can affect the load and roll-over ratio of the punch during processing, were set as the design variables. Sensitivity analysis was also conducted to determine the influence of each design variable on the punch load and roll-over ratio. As a result, shear angle, friction coefficient and die clearance were found to be sensitive to load and roll-over ratio. The punch load and roll-over ratio were set as the objective function and the equation of each design variable and objective function was derives using the Response Surface Method. Finally, the optimal value of the design variables was derived using the Response Surface Method. Application of this model to finite element analysis resulted in 22.14% improvement in the roll-over ratio of the punch load and material.