• Title/Summary/Keyword: 전단 거동

Search Result 2,042, Processing Time 0.028 seconds

Shear Behavior and Shear Analysis of Reinforced Concrete Members Containing Steel Fibers (강섬유를 혼입한 철근 콘크리트 부재의 전단거동 및 전단해석에 관한 연구)

  • 오병환;임동환;이형준
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.171-180
    • /
    • 1993
  • 본 논문에서는 강섬유를 혼입한 철근콘크리트 부재의 전단거동에 관한 실험 및 이론적 연구를 수행하였다. 이를 위하여 강섬유가 혼입된 구조부재를 제작하여 실험을 수행하여 강섬유의 전단보강 효과를 규명하였으며, 부재의 연성, 극한전단강도 및 초기균열 전단강도 등을 모두 만족하는 최적의 강섬유 혼입량 및 전단 철근 배근량을 제안하였다. 본 실험으로부터 강섬유의 혼입으로 인하여 연성의 증가뿐 아니라, 초기균열강도는 크게 향상되었으며, 극한전단강도 역시 만족할만큼 증가함을 알수 있었다. 위의 실험결과로부터 강섬유 혼입량(체적비)1%, 시방서에서 규정하는 전단철근 필요량의 75%가 가장 만족스러운 조합임을 알 수 있었다. 본 논문에서는 강섬유가 혼입된 철근 콘크리트부재가 극한 전단강도 예측기법이 제시되었으며, 앞으로 강섬유 콘크리트는 연성을 필요로 한는 내진구조물등에 효율적으로 이용될 것으로 사료된다.

Model and Method for Post-Failure Analysis of Composite Structure (복합재 구조물의 초기파손후의 거동묘사를 위한 모델과 해석방법)

  • 김용완;황창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.506-513
    • /
    • 1992
  • 본 연구에서는 복합재 구조물에 대하여 유한요소해석법에 현상학적 모델인 전 단지연해석을 도입하여 강성저하와 모재파손을 예측하고 변형률을 매개변수로 한 Wei- bull 함수를 섬유파손해석에 도입하여 초기파손후의 거동을 묘사하고자 한다. 그리 고 면내전단하중이 작용하는 경우에 대해 전단지연해석을 수행할 수 있도록 모델링을 확장했다. 모재균열의 존재로 인한 단층의 강성변화는 실험으로 측정이 불가능하므 로 유한요소해석을 수행하여 비교하였다. 이 모델로부터 전단강성의 저하를 평가하 는 방법을 사용하였으며, 모재파손의 밀도 예측도 평균변형률 개념으로 전단효과를 고 려할 수 있도록 수정하였다. 그리고 초기파손후의 거동을 점진적으로 해석하기 위해 비선형 유한요소프그램을 작성하고, 상기의 모델을 도입하여 초기파손후의 거동을 보 다 정확히 묘사할 수 있는 방법을 제시하고 예로서 평시편에 대해 해석하고 실험치 및 타방법의 결과와 비교하였다.

Characteristics of Shear Behavior According to State of Particle Bonding and Crushing (입자 결합 및 파쇄 형태에 따른 전단거동 특성)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.1-12
    • /
    • 2011
  • In order to analyze the influence of particle bonding and crushing on the characteristics of shear behavior, especially residual shear behavior of granular soil, ring shear test was simulated by using DEM(Discrete Element Method)-based software program PFC(Particle Flow Code). Total four models including two non-crushing models and two crushing models were created in this study by using clump or cluster model built in PFC. The applicability of Lobo-crushing model proposed by Lobo-Guerrero and Vallejo(2005) was investigated. In addition, the results of ring shear test were analyzed and compared with those of direct shear test. The results showed that the modelling of ring shear test should be conducted to investigate the residual shear behavior. The Lobo-crushing model cannot be applied to investigate the residual shear strength. Finally, it can be concluded that the numerical models excluding Lobo-crushing model suggested in this study can be used extensively for other studies concerning the residual shear behavior of granular soil including soil crushing.

Fatigue Behavior of Large Stud Shear Connectors (대직경 스터드 전단연결재의 피로거동)

  • Shim, Chang Su;Lee, Pil Goo;Kim, Hyun Ho;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.621-628
    • /
    • 2003
  • Stud shear connectors are the most commonly used shear connectors: up to 22mm studs are usually used in steel-concrete composite structures. To expand the current design codes for stud connectors, large studs with a diameter of more than 25mm should be investigated. Through push-out tests on large stud shear connectors that transcend the limitation of current design codes, fatigue behavior was investigated and comparisons with design equations performed. The shear stiffness of the connectors in elastic range was evaluated through shear tests on 25mm, 27mm, and 30mm studs and compared with those from static tests. The fatigue behavior of large studs was discussed in terms of residual slip and load-slip curves. The initiation of fatigue cracks in the welding part could be detected through the history of displacement range. Test results showed that the design fatigue endurance of S-N curves in current design codes could be applied to large stud shear connector.

A Simple Model for the Nonlinear Analysis of an RC Shear Wall with Boundary Elements (경계요소를 가진 철근콘크리트 전단벽의 비선형 해석을 위한 간편 모델)

  • Kim, Tae-Wan;Jeong, Seong-Hoon;You, Tae-Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.45-54
    • /
    • 2011
  • A simple model for reinforced concrete shear walls with boundary elements is proposed, which is a macro-model composed of spring elements representing flexure and shear behaviors. The flexural behaviour is represented by vertical springs at the wall ends, where the moment strength and rotational capacity of the wall are based on section analysis. The shear behaviour is represented by a horizontal spring at the wall center, where the key parameters for the shear behavior are based on the flexural behaviour since the shear walls with boundary elements are governed by the flexure. The proposed model was prepared with the results of hysteretic tests of the shear walls, and then the reliability of the hysteretic rule and variables was investigated by nonlinear dynamic analyses. Using parametric study with nonlinear dynamic analyses, the effect of the variables on demand and capacity, which are major parameters in seismic performance evaluation, are investigated. Results show that the measured and calculated shear forces versus the shear distortion relationships are slightly different, but the global response is well simulated. Furthermore, the demand and capacity are also changed in a similar way to the change in the major parameters so that the proposed model may be appropriate for reinforced concrete shear walls with boundary elements.

Strength Estimation of Joints in Floating Concrete Structures Subjected to Shear (전단을 받는 부유식 콘크리트 구조물 접합부의 강도 평가)

  • Yang, In-Hwan;Kim, Kyung-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • This study explores the structural behavior of module joints in floating concrete structures subjected to shear. Crack patterns, shear behavior and shear capacity of shear keys in joints of concrete module were investigated. Test parameters included shear key shape, or inclination of shear keys, confining stress levels and compressive strength of concrete. Test results showed that shear strength of joints increased as shear key inclination increased. Test results also showed that shear strength of concrete module joints increased with the increase of confining stress levels. The equation for predicting shear strength of joints was suggested, which was based on the test results. Shear strength prediction by using the equation suggested in this study showed good agreement with test results.

Shear Behavior of Concrete Beams Reinforced with FRP Bar (FRP Bar 보강 콘크리트 보의 전단거동)

  • Choi, Ik-Chang;Jung, Dae-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.403-409
    • /
    • 2013
  • Shear behavior of concrete beams reinforced with steel and/or FRP bar is studied through experimental tests. Experimental parameters includes the mechanical properties of reinforcements in shear and bending, and the ratio of shear reinforcement. The validity of the modified truss analogy, that has been widely accepted as a basis for the practical shear design of concrete beams, has been examined thoroughly by analyzing experimental results. The experimental results indicate that the modified truss analogy cannot be directly adopted to the shear problem of concrete beams reinforced with FRP bar.

Comparison of Shear Strength and Shear Energy for 48Sn-52In Solder Bumps with Variation of Reflow Conditions (리플로우 조건에 따른 Sn-52In 솔더범프의 전단응력과 전단에너지 비교)

  • Choi Jae-Hoon;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.351-357
    • /
    • 2005
  • Comparison of shear strength and shear energy of the 48Sn-52In solder bumps reflowed on Cu UBM were made with variations of reflow temperature from $150^{\circ}C$ to $250^{\circ}C$ and reflow time from 1 min to 20 min to establish an evaluation method for the mechanical reliability of solder bumps. Compared to the shear strength, the shear energy of the Sn-52In solder bumps was much more consistent with the solder reaction behavior and the fracture mode at the Sn-52In/Cu interface, indicating that the bump shear energy can be used as an effective tool to evaluate the mechanical integrity of solder/UBM interface.

  • PDF

토목섬유 사이의 interface 전단 거동 modeling

  • Seo, Min-Woo;Park, Jun-Boum;Park, Inn-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.393-400
    • /
    • 2003
  • 지오멤브레인(geomembrane)과 다른 토목섬유, 즉 지오텍스타일 또는 GCL, 사이의 interface 전단거동을 특성화하는 strain-softening 모델을 개발하였다. 본 연구에 제안된 모델은 일차적으로 smooth 지오멤브레인과 textured 지오멤브레인을 대상으로 실시한 직접전단 시험결과를 대상으로 구축되었다. 시험을 통해 측정된 변위-전단응력의 관계는 strain-softening 현상를 고려하기 위해서 최대점이 발생하는 위치를 기준으로, pre-peak과 post-peak 영역으로 나누어 분석을 실시하였다. 실험결과를 토대로 구축된 모델식은 원 자료와의 비교를 통해 본 모델의 유효성을 검증하였다. 비교 결과 높은 연직 응력에서 약간의 차이를 보이긴 하지만, 대체적으로 실험 결과와 구축된 모델을 이용한 역계산의 값이 좋은 일치를 보임을 확인할 수 있었다. 특별히 연직응력이 낮은 단계에서는 높은 일치를 보였는데, 이를 통해 제안된 식이 매립지의 최종 cover와 같이 상재 연직하중이 작은 경우에 지오멤브레인이 포함된 interface의 전단 거동에 대한 합리적인 구성 방정식이 될 수 있음을 확인할 수 있었다.

  • PDF

Verification for the Cyclic Shear Behavior of Rough Granite Joint Using Constitutive Equation (구성방정식을 이용한 거친 화강암 절리면의 주기전단거동 특성규명)

  • 김대상;박인준;이희석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.141-152
    • /
    • 2002
  • Although a number of constitutive models have been proposed to define the behavior of geotechnical materials including elastic, plastic, and dynamic response, flew numerical models have been developed for the cyclic shear behavior of rock joints or interfaces. Such realistic constitutive models play an important role in analyzing and predicting the response of joints under dynamic loads. The purpose of this research is to verify the constitutive model modified for rough granite joints based on Disturbed State Concept(DSC) model, which has been successfully verified with respect to other materials such as dry sand-steel interface and wet sand-concrete interface. Furthermore, DSC model is compared and verified with respect to cyclic shear tests and numerical analysis results based on Plesha model. Based on the results of this research, it can be stated that DSC model is capable of characterizing the cyclic shear behavior of rough granite joints under dynamic loads.