• Title/Summary/Keyword: 전단파

Search Result 445, Processing Time 0.022 seconds

Shear Wave Velocity Profile Considering Uncertainty Caused by Spatial Variation of Material Property in Core Zone of Fill Dam (필댐 축조재료의 공간 변동성에 의한 불확실성이 고려된 국내 필댐 심벽부 전단파 속도 주상도 모델)

  • Park, Hyung-Choon;Nah, Byung-Chan;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.51-60
    • /
    • 2016
  • In determining a shear wave velocity (Vs) profile model based on field tests for dams, the uncertainties always exist. These uncertainties are caused by spatial variations of material properties in each dam and between dams and should be considered in determining Vs profile model for dams. In this paper, these uncertainties are evaluated and Vs profile model for core zone of fill dam in Korea is proposed using the shear wave velocity profiles determined in seven fill dams. The proposed Vs profile model is compared with Kim's model and Sawada-Takahashi model widely used for evaluation of Vs profile of core zone of fill dam.

An Experimental Study on the Behavior of T-type Modular Composite profiled Beams (T형 모듈단면 합성 프로파일보의 거동에 관한 실험적 연구)

  • Ahn, Hyung Joon;Lee, Seong Won;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.539-548
    • /
    • 2008
  • This study aims to determine the applicability of the previously published T-type modular profile beam in the manner of producing specimens designed specially for the said purpose, determining their bending and shear behaviors depending on the presence of shear reinforcement, and analyzing the results in comparison with the theoretical equation of plastic deformation. The modular profile beam contributes to bending and shear resistance with the addition of the profile to the form function, and enhances the molding performance through the modular concept. The experimental results showed that the TS series specimens with shear reinforcement have bending behaviors superior to those of the T series specimens without shear reinforcement, which suggests that the used shear reinforcement appropriately bears the shear force. However, it was considered that all the specimens except for the T1-1 specimen failed to have adequate bending performance because of the intermodular slipping caused by the shear failure of the bolts. It is expected that further studies on the T-type modular profile beam, in which shear connectors will be considered as a variable,be performed to develop optimal intermodular connection methods.

Field Elastic Wave and Electrical Resistivity Penetrometer for Evaluation of Elastic Moduli and Void Ratio (탄성계수 및 간극비 평가를 위한 현장 관입형 탄성파 및 전기비저항 프로브)

  • Yoon, Hyung-Koo;Kim, Dong-Hee;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.85-93
    • /
    • 2010
  • The shear stiffness has become an important design parameter to understand the soil behavior. In particular, the elastic moduli and void ratio has been considered as important parameters for the design of the geotechnical structures. The objective of this paper is the development of the penetration type Field Velocity and Resistivity Probe (FVRP) which is able to assess the elastic moduli and void ratio based on the elastic wave velocities and electrical resistivity. The elastic waves including the compressional and shear wave are measured by piezo disk elements and bender elements. And the electrical resistivity is measured by the resistivity probe, which is manufactured and installed at the tip of the FVRP. The penetration tests are carried out in calibration chamber and field. In the laboratory calibration chamber test, after the sand-clay slurry mixtures are prepared and consolidated. The FVRP is progressively penetrated and the data are measured at each 1 cm. The field experiment is also carried out in the southern part of Korea Peninsular. Data gathering is performed in the depth of 6~20 m at each 10 cm. The elastic moduli and void ratio are estimated based on the analytical and empirical solutions by using the elastic wave velocities and electrical resistivity measured in the chamber and field. The void ratios based on the elastic wave velocities and the electrical resistivity are similar to the volume based void ratio. This study suggests that the FVRP, which evaluates the elastic wave velocities and the electrical resistivity, may be a useful instrument for assessing the elastic moduli and void ratio in soft soils.

Short-Array Beamforming Technique for the Investigation of Shear-Wave Velocity at Large Rockfill Dams (대형 사력댐에서의 전단파속도 평가를 위한 단측선 빔형성기법)

  • Joh, Sung-Ho;Norfarah, Nadia Ismail
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.207-218
    • /
    • 2013
  • One of the input parameters in the evaluation of seismic performance of rockfill dams is shear-wave velocity of rock debris and clay core. Reliable evaluation of shear-wave velocity by surface-wave methods requires overcoming the problems of rock-debris discontinuity, material inhomogeneity and sloping boundary. In this paper, for the shear-wave velocity investigation of rockfill dams, SBF (Short-Array Beamforming) technique was proposed using the principles of conventional beamforming technique and adopted to solve limitations of the conventional surface-wave techniques. SBF technique utilizes a 3- to 9-m long measurement array and a far-field source, which allowed the technique to eliminate problems of near-field effects and investigate local anomalies. This paper describes the procedure to investigate shear-wave velocity profile of rockfill dams by SBF technique and IRF (Impulse-response filtration) technique with accuracy and reliability. Validity of the proposed SBF technique was verified by comparisons with downhole tests and CapSASW (Common-Array-Profiling Spectral-Analysis-of-Surface-Waves) tests at a railroad embankment compacted with rock debris.

Evaluation of Shear Wave Velocity Profiles by Performing Uphole Test Using SPT (표준관입시험을 이용한 업홀시험에서 전단파 속도 주상도의 도출)

  • 김동수;방은석;서원석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.135-146
    • /
    • 2003
  • Uphole test is a seismic field test using receivers on ground surface and a source in depth. In this paper, the uphole test using SPT(standard penetration test) which is economical and reliable for obtaining shear wave velocity profile was introduced. In the proposed uphole test, SPT sampler which is common in site investigation, was used as a source and several 1Hz geophones in line were used as receivers. Test procedures in field and interpretation methods for obtaining interval times and for determining shear wave velocity profile considering refracted ray path were introduced. Finally, uphole test was performed at three sites, and the applicability of the proposed uphole test was verified by comparing wave velocity profiles determined by the uphole test with the profiles determined by downhole test, SASW test and SPT-N values.

Compressional and Shear Wave Properties of Cement Grout Including Carbon Fiber (탄소섬유를 포함한 시멘트 그라우트의 압축파 및 전단파 특성)

  • Choi, Hyojun;Cho, Wanjei;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.15-24
    • /
    • 2021
  • In Korea, which is mostly mountainous, the proportion of tunnel and underground space development are increasing. Although the ground is reinforced by applying the ground improvement method during underground space development, accidents still occur frequently in Korea. In the grouting method, a representative ground reinforcement method, the effect was judged by comparing the total amount of injection material with the amount of injection material used during the actual grouting construction. However, it is difficult to determine whether the ground reinforcement is properly performed during construction or within the target ground. In order to solve this problem, it is necessary to study a new method for quality control during or after construction by measuring electrical resistivity after performing grouting by mixing carbon fiber, which is a conductive material, and microcement, which is a grout material. In this study, as a basic study, a cement specimen mix ed with 0%, 3%, 5%, 7% of carbon fiber was prepared to evaluate the performance of the grout material mixed with carbon fiber, which is a conductive material. The prepared specimens were wet curing for 3 days, 7 days, and 28 days under 99% humidity, and then compression wave velocity and shear wave velocity were measured. As a result of the compression wave velocity and shear wave velocity measurement, it showed a tendency to increase with the increase in the compounding ratio of carbon fibers and the number of days of age, and it was confirmed that the elastic modulus and shear modulus, which are the stiffness of the material, also increased.

An Experimental Investigation of the Variations of the Elastic Wave Velocities with Compaction Energy for Railway Roadbed Materials (다짐 에너지를 고려한 노반 성토 재료의 탄성파 속도 변화의 실험적 분석)

  • Kim, Hak-Sung;Jung, Young-Hoon;Mok, Young-Jin;Lee, Jin-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1037-1047
    • /
    • 2013
  • A systematic laboratory compaction testing was performed with the laboratory seismic measurements of the compacted specimens sampled from various compaction fills and was supplemented with in-situ seismic testing to investigate the effects of compaction energy on the elastic wave velocities of the railway roadbed materials. The both variances of the compressive and shear wave velocities with moisture content curve ($V_p$-w and $V_s$-w curves) are similar to the general trend of the density-moisture content curve(${\gamma}_d$-w curve). At the wet side of optimal moisture content (OMC), either $V_p$ or $V_s$ does not significantly increase, which is well reflecting the no gaining in density with the increasing compaction energy exceeding modified-D compaction effort. $V_p$ increases linearly with ${\gamma}_d$ at the dry side of OMC, while it does exponentially at the wet side. The in-situ wave velocities were found to be influenced by the level of confinement and $V_s$ was more sensitive to compaction energy than $V_p$.

Development and Application of a Source for Crosshole Seismic Method to Determine Body Wave Velocity with Depth at Multi-layered Sites (다층 구성 부지에서의 깊이별 실체파 속도의 결정을 위한 시추공간 탄성파 탐사 발진 장치 개발 및 적용)

  • Sun, Chang-Guk;Mok, Young-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.193-206
    • /
    • 2006
  • Among various borehole seismic testing techniques for determining body wave velocity, crosshole seismic method has been known as one of the most suitable technique for evaluating reliably geotechnical dynamic properties. In this study, to perform successfully the crosshole seismic test for rock as well as soil layers regardless of the groundwater level, multi-purposed spring-loaded source which impact horizontally a subsurface ground in vertical borehole was developed and applied at major facility sites in Korea. The geotechnical dynamic properties were evaluated by determining efficiently the body wave velocities such as shear wave velocity and compressional wave velocity from the horizontally impacted crosshole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation and seismic design of the target facilities.

Correlating Undrained Shear Strength and Density of Silt with Shear Wave Velocity (실트의 비배수 전단강도 및 밀도와 전단파속도와의 상관관계)

  • Oh, Sang-Hoon;Park, Dong-Sun;Jung, Jae-Woo;Park, Chul-Soo;Mok, Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.79-87
    • /
    • 2008
  • Recently, a new seismic probe, called "MudFork", has been developed and can be utilized for accurate and easy measurements of shear wave velocities of cohesive soils. To expand its use to estimate undrained shear strength and density, a preliminary investigation to correlate these properties with shear wave velocity was attempted. Cone penetration tests and a seismic test, using MudFork, were performed at a silty soil site near Incheon, Korea. Also, undisturbed samples were obtained using thin-wall tube samplers, and the shear wave velocities and undrained shear strengths of the samples were measured in the laboratory. A simple linear relationship between shear strength and shear wave velocity was obtained, and a tentative relationship between density and shear wave velocity was also defined.

SAW Sensors for Measurement of Surface Forces in Fluid Flows (유체흐름에 의한 표면력 측정을 위한 탄성 표면파 센서)

  • 노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.9 no.6
    • /
    • pp.81-90
    • /
    • 1990
  • 유체 동역학에서, 난류에 의해 수중 구조물에 가해지는 압력과 전단력의 측정은 중요한 문제이 다. 이러한 유체의 흐름에 의한 압력과 전단력, 나아가 유체의 흐름방향까지 시간과 거리의 함수로 측정 할 수 있는 새로운 탄성표면파 센서가 개발되었다. 센서는 압축 인장형 전단력을 받는 두 개의 표면파 와 흐르는 유체 속의 표면파의 속도차는 또한 유체흐름에 의해 가해지는 압력에 비례한다. 정지류 속의 표면파와 흐르는 유체 속의 표면파의 속도차는 또한 유체흐름에 의해 가해지는 압력에 비례한다. 이 센 서를 응력 로젯과 같이 배열하면 유체의 진행방향도 함께 측정할 수 있다. 표면파 센서는 넓은 주파수 대역에 걸쳐 사용이 가능하므로, 적절히 설계하면 유체의 흐름에 의한 표면력과 유체의 진행방향을 동 시에 거리와 시간의 함수로서 국부적으로, 광역적으로 측정할 수 있다.

  • PDF