• Title/Summary/Keyword: 전단파괴면

Search Result 224, Processing Time 0.023 seconds

Physico-chemical Characteristics of Surimi by Washing Method and pH Control Level of Chopped Chicken Breast (분쇄닭가슴살의 수세 방법과 pH 조절 수준에 따른 Surimi의 이화학적 특성)

  • Park, K.H.;Jin, S.K.;Kim, I.S.;Ha, J.H.;Kang, S.M.;Choi, Y.J.;Kim, J.S.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1059-1066
    • /
    • 2005
  • The objective of this study was to investigate the physico-chemical characteristics of chicken breast surimi processed by four times washing (C) and adjustment to pH 3.0 (T1) and pH 11.0 (T2). Water, crude protein, myofibrillar protein and yield of the treatment C were lower compared to other two treatments. Crude fat of T2 was higher than other two treatments. pH, WHC, breaking force and deformation were not different among the treatments. Shear force of T2 was the highest, followed by T1 and C. L* of T2 and a* of T1 were lower than other two treatments. b* of C was the highest, while T2 was the lowest. Brittleness and hardness in textural properties were not different among the treatments. Cohesiveness of T1 was the lowest among three treatments. Springiness and chewiness of T1 and T2 were higher than those of treatment C, respectively. Gumminess of T2 were higher compared to C and T1. Appearance and flavor in sensory evaluation were the highest in T1 and the lowest in C among three treatments. Color, aroma, juiciness, tenderness and overall acceptability were not different among the treatments. In conclusion, physico-chemical quality of chicken breast surimi was the highest in T2 among three treatments.

An Experimental Study on Optimum Slanting Angle in Reticulated Root Piles Installation (그물식 뿌리말뚝의 최적 타설경사각에 관한 실험 연구)

  • 이승현;김병일
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 1995
  • Load testis are executed on model reticulated root piles (RRP) to figure out the optimum slanting angle in the piles installation. One set of model RRP consists of 8 slanting piles which are installed in circular patterns forming two concentric circles, each of which is made by 4 piles. Each pile which is a steel bar of 5m in diameter and 300mm in length is coated to become a pile of 6.5mm in diameter. The slanting angle of the model RRP varies from 0$^{\circ}$ to 20$^{\circ}$ Comparing ultimate bearing capacities of the model RRP of different installation angles, it is observed that the ultimate capacities of the RRP increase as the installation angle increases until 15$^{\circ}$, and the optimum slanting angle of the RRP is around 15$^{\circ}$ The ultimate bearing capacity of the 15$^{\circ}$-RRP is found to be 22% bigger than that of the vertical RRP and 120% bigger than that of the circular surface footing whose diameter is same with the circle formed by outer root piles'heads. However, it is noticed that when the slanting angle of the RRP is increased over 15$^{\circ}$, the ultimate capacity starts to be reduced. The ultimate capacity of 20$^{\circ}$-RRP is even smaller than that of the vertical RRP by as much as 5%. From the observation of the load settlement curve obtained during the RRP load tests, it is known that as the slanting angle gets bigger the load -settlement behavior becomes more ductile.

  • PDF

Geological Structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization (해남 모이산 천열수 금-은 광호대의 지질구조와 광화작용 당시의 지구조환경)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Ryoo, Chung-Ryul;Koh, Sang-Mo;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.413-431
    • /
    • 2011
  • An Epithemal Au-Ag mineralized zone is developed in the Moisan area of Hwangsan-myeon, Haenam-gun, Jeol-lanam-do, Korea, which is located in the southwestern part of the Ogcheon metamorphic zone. It is hosted in the Hwangsan volcaniclastics of the Haenam Formation of the Late Cretaceous Yucheon Group. This research investigated the characteristics of bedding arrangement, fold, fault, fracture system, quartz vein and the time-relationship of the fracture system to understand the geological structure related to the formation of the mineralized zone. On the basis of this result, the tectonic environment at the time of the mineralization was considered. Beds mainly trend east-northeast and gently dip into north-northwest or south-southeast. Their poles have been rearranged by subhorizontal-upright open fold of (east)-northeast trend as well as dip-slip fault. Fracture system was formed through at least 6~7 different deformation events. D1 event; formation phase of the main fracture set of EW (D1-1) and NS (D1-2) trends with a good extensity, D2 event; that of the extension fracture of NW trend, and conjugate shear fracturing of the EW (dextral) and NS (sinistral) trends, D3 event; that of the extension fracture of NE trend, and conjugate shear refracturing of the EW (sinistral) and NS (dextral) trends, D4 event; that of the extension fracture of NS trend showing a poor extensity, D5 event; that of the extension fracture of NW trend, and conjugate shear refracturing of the EW (dextral) and NS (sinistral) trends, D6 event; that of the extension fracture of EW trend showing a poor extensity. Frequency distribution of fracture sets of each deformation event is D1-1 (19.73 %)> D1-2 (16.44 %)> D3=D5 (14.79 %)> D2 (13.70 %)> D4 (12.33 %)> D6 (8.22 %) in descending order. The average number of fracture sets within 1 meter at each deformation event is D6 (5.00)> D5 = D4 (4.67)> D2 (4.60)> D3 (4.13)> D1-1 (3.33)> D1-2 (2.83) in descending order. The average density of all fractures shows 4.20 fractures/1 m, that is, the average spacing of all fractures is more than 23.8 cm. The frequency distribution of quartz veins at each orientation is as follows: EW (52 %)> NW (28 %)> NS (12 %)> NE (8 %) trends in descending order. The average density of all quartz veins shows 4.14 veins/1 m, that is, the average spacing of all quartz veins is more than 24.2 cm. Microstructural data on the quartz veins indicate that the epithermal Au-Ag mineralization (ca. 77.9~73.1 Ma) in the Moisan area seems to occur mainly along the existing D1 fracture sets of EW and NS trends with a good extensity not under tectonic stress but non-deformational environment directly after epithermal rupture fracturing. The D1 fracturing is considered to occur under the unstable tectonic environment which alternates compression and tension of NS trend due to the oblique northward subduction of the Izanagi plate resulting in the igneous activity and deformation of the Yucheon Group and the Bulguksa igneous rocks during Late Cretaceous time.

Behavior of Hollow Box Girder Using Unbonded Compressive Pre-stressing (비부착 압축 프리스트레싱을 도입한 중공박스 거더의 거동)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Kim, Tae Kyun;Eoh, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.201-209
    • /
    • 2010
  • Generally, PSC girder bridge uses total gross cross section to resist applied loads unlike reinforced concrete member. Also, it is used as short and middle span (less than 30 m) bridges due to advantages such as ease of design and construction, reduction of cost, and convenience of maintenance. But, due to recent increased public interests for environmental friendly and appearance appealing bridges all over the world, the demands for longer span bridges have been continuously increasing. This trend is shown not only in ordinary long span bridge types such as cable supported bridges but also in PSC girder bridges. In order to meet the increasing demands for new type of long span bridges, PSC hollow box girder with H-type steel as compression reinforcements is developed for bridge with a single span of more than 50 m. The developed PSC girder applies compressive prestressing at H-type compression reinforcements using unbonded PS tendon. The purpose of compressive prestressing is to recover plastic displacement of PSC girder after long term service by releasing the prestressing. The static test composed of 4 different stages in 3-point bending test is performed to verify safety of the bridge. First stage loading is applied until tensile cracks form. Then in second stage, the load is removed and the girder is unloaded. In third stage, after removal of loading, recovery of remaining plastic deformation is verified as the compressive prestressing is removed at H-type reinforcements. Then, in fourth stage, loading is continued until the girder fails. The experimental results showed that the first crack occurs at 1,615 kN with a corresponding displacement of 187.0 mm. The introduction of the additional compressive stress in the lower part of the girder from the removal of unbonded compressive prestressing of the H-type steel showed a capacity improvement of about 60% (7.7 mm) recovery of the residual deformation (18.7 mm) that occurred from load increase. By using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and rehabilitation of PSC girders are relatively easy, and the cost of maintenance is expected to decrease.