• Title/Summary/Keyword: 전단율

Search Result 715, Processing Time 0.03 seconds

Nonlinear Analysis of Reinforced Concrete Shear Wall Using Mander's Fiber Section Analysis Method (Mander의 층상화 단면 해석방법을 이용한 철근콘크리트 전단벽체의 비선형해석)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.111-119
    • /
    • 2005
  • The objective of this study is to predict fracture movements accurately and reliably by nonlinear analysis of the response of RC shear wall or RC flange sections. Hognestad's and Vallenas's theories are used for concrete model and Ramberg-Osgood's theory is used for steel model. Non-linear analysis considering confined concrete and unconfined concrete is performed. Mander's Fiber Approach Section analysis, new strain profile considering the Gamma factor are used to this section analysis. The section analysis considering cases of precracked, uncracked, boundary warping and shear warping is performed.

A Shear Strength Characteristics in Deep-sea Sediment from the Clarion-Clipperton Fracture Zone, Northeast Equatorial Pacific (북동태평양 클라리온-클리퍼톤 균열대 심해저 퇴적물의 전단강도 특성)

  • 지상범;강정극;김기현;박정기;손승규;고영탁
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.255-267
    • /
    • 2004
  • Deep-sea surface sediments acquired by multiple corer from 69 stations in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific, were analyzed for shear strength properties to understand sedimentological process. The pelagic red clay from northern part of study area shows low average shear strength(4.4 kPa), while the siliceous sediment from middle area shows high(6.3 kPa). The calcareous sediment from southern area shows very low average shear strength(3.4 kPa), and transitional sediment between middle and southern area shows intermediate value(3.8 kPa) between siliceous and calcareous sediment. The depth profiles of average shear strength of pelagicred clay show gradual increment with depth due to decrease of water content with depth by general consolidation process. On the other, abrupt increment of average shear strength with depth in siliceous sediment is related to sedimentary hiatus. The very low shear strength in calcareous sediment is linked to very high sedimentation rate ofsouthern area compared with other study area.

Evaluation of Shear Behavior of Precast RC Beams According to Replacement Ratio of Ground Granulated Blast Furnace Slag (고로슬래그 미분말 치환율에 따른 프리캐스트 철근콘크리트 보의 전단거동 평가)

  • Jeong, Chan-Yu;Kim, Young-Seek;Lee, Jin-Seop;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.82-89
    • /
    • 2014
  • This study evaluates the shear performance of precast beams with ground granulated blast furnace slag. A total of four specimens according to replacement ratio of ground granulated blast furnace slag. The specimens under three loading points had a shear span-to-depth ratio of 2.5, and a rectangular section with a width of 200mm and a effect depth of 300 mm. In this study, existing equations were used for predicting the shear strength of the specimens. The shear strength by existing equations was compared with those of 89 reinforced concrete beams without shear reinforcement. It can be shown from experimental results that all specimens with ground granulated blast furnace slag showed a similar shear strength as compared with the specimen with portland cements alone.

Strut-Tie Models and Load Distribution Ratios for Reinforced Concrete Beams with Shear Span-to-Effective Depth Ratio of Less than 3 (I) Models and Load Distribution Ratios (전단경간비가 3 이하인 철근콘크리트 보의 스트럿-타이 모델 및 하중분배율(I) 모델 및 하중분배율)

  • Chae, Hyun-Soo;Yun, Young Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.257-265
    • /
    • 2016
  • The failure behavior of reinforced concrete beams is governed by the mechanical relationships between the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, two simple indeterminate strut-tie models which can reflect all characteristics of the failure behavior of reinforced concrete beams were proposed. The proposed models are effective for the beams with shear span-to-effective depth ratio of less than 3. For each model, a load distribution ratio, defined as the fraction of load transferred by a truss mechanism, is also proposed to help structural designers perform the rational design of the beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratios, the effect of the primary design variables including shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete was reflected through numerous material nonlinear analysis of the proposed indeterminate strut-tie models. In the companion paper, the validity of the proposed models and load distribution ratios was examined by applying them to the evaluation of the failure strength of 335 reinforced concrete beams tested to failure by others.

Effect of Fines Content on the Cyclic Shear Characteristics of Sand-clay Mixtures (점토혼합모래의 반복전단특성에 대한 세립분 함유율의 영향)

  • Kim, Uk-Gie;Hyodo, Masayuki;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • In this study, cyclic shear characterics of sand-clay mixtures were analyzed. In order to perform cyclic triaxial tests on sand clay mixtures, natural clays with activity and silica sand were mixed variously to reproduce soils with wide range of grain size compositions. Test specimens with various fines contents were prepared by the moisture compaction and pre-consolidation methods, while paying attention to the void ratio expressed in terms of the sand structure and clay structures, and undrained cyclic shear tests were performed. In the test results, cyclic shear strength decreased with increasing of sand granular void ratio below 20% of fine contents. When the granular void ratio of the test specimen exceeded the maximum void ratio of the silica sand, the clay matrix dominated the soil structure, and soil structures were not influenced by compaction energy. It was observed that, the matrix structure of the coarse particles has great effect on the undrained cyclic shear strength characteristics for sand-clay mixtures, and therefore, it is more appropriate to pay more attention to the density of the sand structure, rather than to the fines content.

A Study on the Shear Properties of Steel Fiber Reinforced Concrete Beams (강섬유(鋼纖維) 보강(補强)콘크리트보의 전단특성(剪斷特性)에 관한 연구(研究))

  • Moon, Je Kil;Hong, Ik Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.1-12
    • /
    • 1993
  • Four series of fiber reinforced concrete beams without shear reinforcement were tested to determine their cracking shear strengths and ultimate shear capacities. Results of tests on 36 reinforced concrete beams (including 21 containing steel fibers) are reported. Four parameters were varied in the study, namely, the concrete compressive strength, volume fraction of fibers, shear span-to-depth ratio, and the tensile steel reinforcement. The effects of fiber incorporation on failure modes, deflections, cracking shear strength, and ultimate shear strength have been examined. Resistance to shear stresses have been found to be improved by the inclusion of fibers. Based on these investigations, a method of computing the shear strength of steel fiber reinforced concrete beam is suggested. The comparisons between computed values and experimentally observed values are shown to verify the proposed theoretical treatment.

  • PDF

An Evaluation of Shear Strength of Plain HVFAC Concrete by Double Shear Test Method (2면전단시험법에 의한 무근 HVFAC 콘크리트의 전단강도 평가)

  • Lee, Hyung-Jib;Suh, Jeong-In;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.261-266
    • /
    • 2017
  • In this study, to determine the shear properties, experiments on the shear behavior of plain concrete with the high volume fly ash cement by double shear test were performed. Test parameters are fly ash content and concrete compressive strength. Experimental results show the tendency that the shear strength similarly increases with an increase in the compressive strength as is generally known. The concrete shear strength formula proposed in the concrete structural design code of KCI shows a similar tendency to the experimental results, and It is expected that the shear strength of the high volume fly ash cement concrete can be applied with the formula given in the concrete structural design code of KCI. When considering the fly ash content ratio, the shear strength of high volume fly ash cement concrete according to fly ash conctent ratio shows as having a far greater correlation than if it is not considered to fly ash content ratio. So, even though existing code can be appliable for non consideration of the fly ash content ratio, we proposed a formula that is much more relevant than that of concrete structural design code of KCI.

Rheological properties of arabinogalactan solutions isolated from the legumes (콩류 아라비노갈락탄 용액의 유변학적 성질)

  • Kim, Kyeong Yee;Kim, Choon Young
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.330-335
    • /
    • 2019
  • The aim of this study was to investigate the rheological properties of arabinogalactans (AGs) solution isolated from moth bean (MB), navy bean (NB), and soybean (SB) including monosaccharide compositions, intrinsic viscosity, steady shear and dynamic shear rheological properties. The major monosaccharides in MB, NB, and SB were arabinose (64.8, 51.4, and 42.6%) and galactose (13.4, 19.6, and 46.2%). The yield stresses for 5% (w/v) NB and 2.5% (w/v) SB solutions were assessed as 2.10 Pa and 1.98 Pa, respectively, but in case of MB solution, it was observed to be negligible. While 5% MB solution showed rheopectic property, 5% NB and SB solutions showed thixotropic properties. As a result of frequency sweep experiment, the G' values in 2.5% MB and NB were larger than the G" value showed but 2.5% SB exhibited G" value greater than G'. These results would be useful for future application as a food additive in the food industry.

Capacity Evaluation of SFRC Beams Using Recycled Fine and Coarse Aggregates (순환 잔골재 및 굵은골재를 사용한 SFRC 보의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.122-129
    • /
    • 2017
  • The aim of this study is a large amount use of recycled aggregates. The considering recycled aggregates replacement ratio is 50% that of natural aggregates. In order to increase the shear capacity of beams, that may be weaken by use of recycled aggregates, steel fibers are reinforced. The main variables are steel fiber volume fractions such as 0%, 0.5%, 0.75% and 1.0%. After the test, it could confirm that the strength and deformation capacity of beams with the steel fiber content values of 0.5% and 0.75% are comprehensively enhanced compared to non reinforcement. After evaluating the shear strength by using shear strength equations of previous researches, it concluded that the strength equation of Oh et al. (2008) is able to predict the shear strength of SFRC beams on the safety side.