• Title/Summary/Keyword: 전단시험

Search Result 1,848, Processing Time 0.028 seconds

A Study on Shear Characteristics of a Rock Discontinuity under Various Thermal, Hydraulic and Mechanical Conditions (다양한 열-수리-역학적 조건 하에서 불연속면 전단 거동 특성에 관한 실험적 연구)

  • Kim, Taehyun;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.68-86
    • /
    • 2016
  • Understanding the frictional properties of rock discontinuities is crucial to ensure the stability of underground structures. In particular, the frictional behavior at depth depends on the complex interaction among mechanical, hydraulic, thermal and chemical characteristics and their coupled effects. In this study, a series of shear tests were carried out in a triaxial compression chamber to investigate the shearing behavior of saw-cut granite surface and rough shear surface of synthetic rocks. The test results were analyzed using Coulomb's shear strength criterion. The frictional behavior of saw-cut granite surface showed little variation at different confining, water pressures and temperature conditions, however in case of synthetic rocks, the frictional behavior showed different trend depending on normal stress level. In addition, the variation of stiffness and dilation at different testing conditions were analyzed, and the stiffness and dilation showed little variation at different water pressures and temperature conditions.

Numerical Evaluation of the Influence of Joint Roughness on the Deformation Behavior of Jointed Rock Masses (절리면의 거칠기 특성이 정리암반의 거동에 미치는 영향에 대한 수치해석적 연구)

  • 이연규
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.225-236
    • /
    • 2001
  • The roughness of rock joint is one of the most important parameters in developing the shear resistance and the tendency of dilation. Due to the damage accumulated with shearing displacement, the roughness angle is lowered continuously. It is known that dilation, shear strength hardening, and softening are directly related to the degradation of asperities. Much effort has been directed to incorporate the complicated damage mechanism of asperities into a constitutive model fur rock joints. This study presents an elasto-plastic formulation of joint behavior including elastic deformability, dilatancy and asperity surface damage. It is postulated that the plastic portion of incremental displacement 7an be decomposed into contributions from both sliding along the asperity surface and damage of asperity. Numerical cyclic shear tests are presented to illustrate th? performance of the derived incremental stress-displacement relation. A laboratory cyclic shear test is also simulated. Numerical examples reveal that the elasto-plastic joints model is promising.

  • PDF

Characteristics of Shear Behavior for Sand-Clay Composite by Triaxial Test (삼축압축시험에 의한 모래-점토 복합시료의 전단거동 특성)

  • Lee, Jin-Soo;Kim, Jae-Il;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.19-25
    • /
    • 2006
  • To examine the general features of a sand-clay composite triaxial test by making specimen varying ratios of diameters (dw) of sand columns that are installed on the soft ground as drains to diameters (de) of drain zone so called drainage space ratio (n=de/dw), densities of the granular columns, and strength of soft soils round around. I also conducted a test to research the reinforcement ability and effects of the ground when the granular columns are wrapped with supplementary materials such as geotextile. The results of the triaxial compression test showed that the shear strength increase is much big when the granular columns are wrapped with supplementary materials, while the shear strength increases as the diameter and density of the granular column increase in general. Also the drainage space ratio shows a distinct increase just below 3 and a similar shear behavior to sand is appeared. The pore water pressure coefficient decreases as the drainage space ratio decreases, however, when the drainage space ratio is less than 3~4, it declines significantly as shown in the results of shear behavior.

  • PDF

Excess Pore Pressure Induced by Cone Penetration in OC Clay (콘관입으로 인한 과압밀점토의 과잉간극수압의 분포)

  • Kim, Tai-Jun;Kim, Sang-In;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.75-87
    • /
    • 2006
  • A series of calibration chamber tests are performed to investigate the spatial distribution of the excess porewater pressure due to piezocone penetration into overconsolidated clays. It was observed that the excess porewater pressure increases monotonically from the piezocone surface to the outer boundary of the shear zone and then decreases logarithmically, approaching zero at the outer boundary of the plastic zone. It was also found that the size of the shear zone decreases from approximately 2.2 to 1.5 times the cone radius with increasing OCR, while the plastic radius is about 11 times the piezocone radius, regardless of the OCR. Based on the modified Cam clay model and the cylindrical cavity expansion theory, the expressions to predict the Initial porewater pressure at the piezocone were developed, considering the effects of the strain rate and stress anisotropy. The method of predicting the spatial distribution of excess porewater pressure proposed in this study was verified by comparing it with the porewater pressure measured in overconsolidated specimens in the calibration chamber.

Correlating Undrained Shear Strength and Density of Silt with Shear Wave Velocity (실트의 비배수 전단강도 및 밀도와 전단파속도와의 상관관계)

  • Oh, Sang-Hoon;Park, Dong-Sun;Jung, Jae-Woo;Park, Chul-Soo;Mok, Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.79-87
    • /
    • 2008
  • Recently, a new seismic probe, called "MudFork", has been developed and can be utilized for accurate and easy measurements of shear wave velocities of cohesive soils. To expand its use to estimate undrained shear strength and density, a preliminary investigation to correlate these properties with shear wave velocity was attempted. Cone penetration tests and a seismic test, using MudFork, were performed at a silty soil site near Incheon, Korea. Also, undisturbed samples were obtained using thin-wall tube samplers, and the shear wave velocities and undrained shear strengths of the samples were measured in the laboratory. A simple linear relationship between shear strength and shear wave velocity was obtained, and a tentative relationship between density and shear wave velocity was also defined.

Ballistic Resistance Performance of Kevlar Fabric Impregnated with Shear Thickening Fluid (전단농화유체가 함침된 Kevlar 재료의 방탄특성)

  • Song, Heung-Sub;Yoon, Byung-Il;Kim, Chang-Yun;Park, Jong-Lyul;Kang, Tae-Tin
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • Manufacturing process of the shear thickening fluid(STF) and evaluation of the ballistic penetration resistance performance of the Kevlar-STF composites were studied. STF was made from silica and ethylene glycol, and the Kevlar-STF composite was made by impregnating the STF into the Kevlar fabric. Specimens including neat Kevlar woven fabrics and Kevlar-STF composites with two types of silica were prepared and carried out the ballistic tests. From the results STFs represented shear thickening behavior irrespective of the silica type, and Kevlar-STF composite with spherical silica showed best ballistic penetration resistance performance among them. Especially the specimens of Kevlar-STF composites with spherical silica showed radial fiber deformation by the projectile during the tests, that was somewhat different deformation behavior from those of the neat Kevlar fabrics shown fiber pull-out phenomena or fracture.

Evaluation on Shear Behaviors of the Dapped Ends of Domestic Composite Double Tee Slabs under the Short-Term Loading (단기하중하의 국내 합성 더블티 슬래브 댑단부 전단거동 평가)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.774-781
    • /
    • 2002
  • Shear behaviors of eight dapped ends of four full-scale domestic single-tee slabs were evaluated. The dapped ends with 10cm topping concrete were designed based on live load requirements for the domestic parking lot of m 500kgf/㎡ and for the large market of 1,200 kgf/㎡. All specimens were designed by the ACI 318-99 design. The variations of the experiment were the shape of hanger reinforcements as followings: 1) general PCI design method(currently used in domestic), 2) 90 degree bent-up, 3) 60 degree bent-up. All experiments were conducted with 1.2 m shear span. The results obtained in this study were 1) all specimens fully complied with the shear strength requirements as specified by ACI 318-99 except for one strand bond slip specimen, 2)a specimen with the 60 degree bent up hanger reinforcing detail showed the best shear behaviors under full service and ultimate load, and 3)a specimen with the 90 degree bent up hanger reinforcing detail resulted in the worst shear behaviors.

A Study on Characteristics of Waste Mixed Soil in Landfill (쓰레기 매립지 내 폐기물 혼합지반 특성 연구)

  • Park, Tae-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • This paper presents the geotechnical characteristics of the soil mixed with various waste(waste soil) in the landfill. The physical and mechanical tests were conducted to find out the waste soil. The tests include the gradation, consistency tests, shear and compression and the consolidation tests using both the Rowe cell and the constant ration stress. The analyses of the test results show the waste soil belongs to the well graded sand(SW) in the laboratory and sand-gravel(SG) to fine sand(SF) in the field monitoring based on the unified classification soil system. The shear strength is increasing with increasing the shear displacement, however, the peak of the shear strength does not appear through the test and there is no distinct peak value of the strength obtained. The compression index(Cc) results in as increasing the amount of the sludge included and the compression index is proportional to the sludge included, which means more settlement is expected. The hydraulic conductivity of the waste soil ranges between $1.6{\times}10^{-5}cm/sec$ and $1.8{\times}10^{-7}cm/sec$.

A Constitutive Model Using the Spacing Ratio of Critical State (한계상태 간격비를 이용한 구성모델)

  • Lee, Seung-Rae;O, Se-Bung;Gwan, Gi-Cheol
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.45-58
    • /
    • 1992
  • An elasto-plastic constitutive model for geological materials, which satisfies the flezibility and stability at the same time, can be used in a number of geotechnical problems. Using the spacing ratio of critical state, a flexible model is proposed based on the stability of modified Camflay model. The spacing ratio of critical state can be simply evaluated, and practically used in describing the undrained shearing behavior of clay. The proposed model has precisely predicted the stress paths and stress -strain relationships, compared with the modified Camflay model, with respect to undrained triaxial test results. Besides, the effects of strain rate, creep, and relaxation can also be considered. Using the quasi-state boundary surface, the constitutive relations are well predicted. Therefore, it is found that the assumption of associative flow rule is well posed for undrained behavior of normally consolidated clay.

  • PDF

Effects of Thermal and Mechanical Fatigue Stress on Bond Strength in Bracket Base Configurations (열적, 기계적 피로응력이 교정용 브라켓의 결합강도에 미치는 영향)

  • Kim, Jong-Ghee;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.625-642
    • /
    • 2000
  • The purpose of this study is to evaluate the effects of mechanical and thermal fatigue stress on the shear, tensile and shear-tensile combined bond strengths(SBS, TBS, CBS) in various orthodontic brackets bonded to human premolars with chemically cured adhesive(Ortho-one, Bisco, USA). Five types of commercially available metal brackets with various bracket base configurations of Photoetched base(Tomy, Japan), Non-Etched Foil Mesh base(Dentaurum, Germany), Micro-Etched Foil Mesh base(Ortho Organizers, USA), Chessboard base(Daesung, Korea), and Integral base(3M Unitek, USA) were used. Samples were divided into 3 groups, the first group was acted with shear-tensile combined loads($45^{\circ}$) of 200g for 4 weeks(mechanical fatigue stress), the second group was subjected to the 5,000 thermocycles of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ baths(thermal fatigue stress), and the third group was the control. Bond strengths were measured at the crosshead speed of 0.5mm/min. The cross-section of bracket base/adhesive interface and the fracture surface were examined with the stereoscope and the scanning electron microscope. The resin remnant on bracket base surface was assessed by ART(Adhesive Remnant Index). The obtained results were summarized as follows, 1. In static bond strength, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In all brackets, shear bond strength(SBS) was in the greatest value and shear-tensile combined strength(CBS) was in the least value(p<0.05). 2. After mechanical fatigue test, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In Photoetched base bracket and Micro-Etched Foil Mesh base bracket, shear bond strength(SBS), tensile bond strength(TBS) and shear-tensile combined strength(CBS) were decreased after mechanical fatigue test(p

  • PDF